Issues in Querying Databases with Design Anomalies Using Natural Language Interfaces

  • Rodolfo A. Pazos R.Email author
  • José A. Martínez F.
  • Alan G. Aguirre L.
  • Marco A. Aguirre L.
Part of the Studies in Computational Intelligence book series (SCI, volume 749)


Accessing information is a vital activity in businesses; therefore, databases (DBs) have become necessary tools for storing their information. However, for accessing the information stored in a database, it is necessary to use a DB query language, such as SQL. Natural language interfaces to databases (NLIDBs) allow inexperienced users to obtain information from a DB using natural language expressions without the need of using a DB query language. Despite the relative effectiveness of NLIDBs, most of the approaches proposed for designing NLIDBs ignore the possibility that the DB to be queried could be poorly designed; i.e., it could have design anomalies. Unfortunately, various experiments (described in this paper) show that DB anomalies degrade the performance (recall) of NLIDBs. The purpose of this paper is to analyze the most common DB design anomalies for proposing solutions to this problem and avoid performance degradation of NLIDBs when accessing such DBs.


Database Database anomaly Database schema Natural language interfaces to databases Database normalization 


  1. 1.
    O. Pivert, H. Prade, Handling dirty databases: from user warning to data cleaning towards an interactive approach. in Fourth International Conference on Scalable Uncertainty Management (France, 2010)Google Scholar
  2. 2.
    M.L. Pedro de Jesus, P.M.A. Sousa, Selection of reverse engineering methods for relational databases. in Proceedings of the European Conference on Software Maintenance and Reengineering. (1999)Google Scholar
  3. 3.
    N. Mofourga, Extracting entity-relationship schemas from relational databases: a form-driven approach, in Proceedings of the Fourth Working Conference on Reverse Engineering (IEEE, 1997)Google Scholar
  4. 4.
    P. Rob, C. Coronel, in Database Systems: Design, Implementation, and Management. 8th edn. (Course Technology, 2009)Google Scholar
  5. 5.
    D. Kroenke, in Database Processing: Fundamentals, Design, and Implementation. Eighth edn. (Pearson Education, 2003)Google Scholar
  6. 6.
    C.J. Date, in The Relational Database Dictionary, Extended Edition (O’Reilly Media, 2008)Google Scholar
  7. 7.
    C.J. Date, in An Introduction to Database Systems, 8th edn. (Pearson Education, 2004)Google Scholar
  8. 8.
    M. Minock, C-phrase: a system for building robust natural language interfaces to databases. Data Knowl. Eng. 69, 290–302 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Conlon, J. Conlon, T. James, The economics of natural language interfaces: natural language processing technology as a scarce resource. Decis. Support Syst. 38(1), 141–159 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Giordani, A. Moschitti, Translating queries with generative parsers discriminatively reranked, in Proceedings of Computational Linguistics (Mumbai, 2012), pp. 401–410Google Scholar
  11. 11.
    I. Esquivel, R. Córdoba, D. González, E. Ogarita, SNL2SQL: Conversión de consultas en SQL al idioma Español, in Congreso internacional de investigación, ISSN:1946-5351, Vol. 5, No. 3, Mexico (2013)Google Scholar
  12. 12.
    F. Li, H.V. Jagadish, Constructing an interactive natural language interface for relational databases. Proc. VLBD Endow. 8(1) (2014)Google Scholar
  13. 13.
    J.D. O’Shea, K. Shabaz, K.A. Crockett, Aneesah: a conversational natural language interface to databases, in Proceedings of World Congress on Engineering 2015, vol. 1 (London, 2015)Google Scholar
  14. 14.
    Y. Amsterdamer, A. Kukliansky, T. Milo, A natural language interface for querying general and individual knowledge. Proc. VLDB Endow. 8(12) (2015)Google Scholar
  15. 15.
    K. ElSayed, An Arabic natural language interface system for a database of the Holy Quran. Int. J. Adv. Res. Artif. Intell. (IJARAI 4(7) (2015)Google Scholar
  16. 16.
    A. Kataria, R. Nath, Natural language interface for databases in hindi based on karaka theory. Int. J. Comput. Appl. 122(7), India (2015)Google Scholar
  17. 17.
    R.A. Pazos, M.A. Aguirre, J.J. González, J.A. Martínez, J. Pérez, A.A. Verástegui, Comparative study on the customization of natural language interfaces to databases, SpringerPlus, doi: 10.1186/s40064-016-2164-y (2016)

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rodolfo A. Pazos R.
    • 1
    Email author
  • José A. Martínez F.
    • 1
  • Alan G. Aguirre L.
    • 1
  • Marco A. Aguirre L.
    • 1
  1. 1.Tecnológico Nacional de México, Instituto Tecnológico de Ciudad MaderoCiudad MaderoMexico

Personalised recommendations