Ensemble Neural Network Optimization Using a Gravitational Search Algorithm with Interval Type-1 and Type-2 Fuzzy Parameter Adaptation in Pattern Recognition Applications

  • Beatriz González
  • Patricia MelinEmail author
  • Fevrier Valdez
  • German Prado-Arechiga
Part of the Studies in Computational Intelligence book series (SCI, volume 749)


In this paper we consider the problem of optimizing ensemble neural networks for pattern recognition with Type-1 and Type-2 fuzzy logic for parameter adaptation in the gravitational search algorithm. The database to be used is of echocardiography images, since these images are very important in clinical echocardiography, and these images help the doctors to diagnose cardiac diseases, as well as to prevent this type of diseases in patient treatment.


Gravitational search algorithm Type-2 fuzzy logic Pattern recognition 


  1. 1.
    E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using a hierarchical genetic algorithm based on the database complexity applied to human recognition. Inf. Sci. 309(10), 73–101 (2015)CrossRefGoogle Scholar
  3. 3.
    D. Sánchez, P. Melin, O. Castillo, Optimization of modular granular neural networks using hierarchical genetic algorithms for human recognition using the ear biometric measure. Eng. Appl. Artif. Intell. 27, 41–56 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Valdez, P. Melin, O. Castillo, Modular Neural Networks architecture optimization with a new nature inspired method using a fuzzy combination of particle swarm optimization and genetic algorithms. Inf. Sci. 270(20), 143–153 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Zameer, J. Arshad, A. Khan, M. Asif, Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134(15), 361–372 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Li, X. Wang, S. Ding, Research of multi-sided multi-granular neural network ensemble optimization method. Neurocomputing 197(12), 78–85 (2016)Google Scholar
  7. 7.
    M. Pulido, P. Melin, O. Castillo, Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280(1), 188–204 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Z. Zhao, X. Feng, Y. Lin, F. Wei, S. Wang, T. Xiao, M. Cao, Z. Hou, Evolved neural network ensemble by multiple heterogeneous swarm intelligence, Neurocomputing 149(Part A, 3), 29–38 (2015)Google Scholar
  9. 9.
    G. Gao, X. Wan, S. Yao, Z. Cui, C. Zhou, X. Sun, Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385386, 250–265 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Arsalan, A. Qureshi, A. Khan, M. Rajarajan, Protection of medical images and patient related information in healthcare: using an intelligent and reversible watermarking technique. Appl. Soft Comput. 51, 168–179 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Yang, W. Zhang, D. Liang, N. Yu, Reversible data hiding in medical images with enhanced contrast in texture area. Digit. Signal Proc. 52, 13–24 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Oliva, H. Lee, N. Spolaôr, C. Coy, F. Wu, Prototype system for feature extraction, classification and study of medical images. Expert Syst. Appl. 63(30), 267–283 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Valdez, J.C. Vazquez, P. Melin, O. Castillo, Comparative study of the use of fuzzy logic in improving particle swarm optimization variants for mathematical functions using co-evolution. Appl. Soft Comput. 52, 1070–1083 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, B. Bouzouia, Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robot. Auton. Sys. 89, 95–109 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Rajak, P. Parthiban, R. Dhanalakshmi, Sustainable transportation systems performance evaluation using fuzzy logic. Ecol. Ind. 71, 503–513 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inf. Sci. 324(10), 247–256 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Ulu, Exact analytical inversion of interval type-2 TSK fuzzy logic systems with closed form inference methods. Appl. Soft Comput. 37, 60–67 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Olivas, F. Valdez, O. Castillo, C.I. Gonzalez, G. Martinez, P. Melin, Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems. Appl. Soft Comput. 53, 74–87 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Sombra, F. Valdez, P. Melin, O. Castillo, A new gravitational search algorithm using fuzzy logic to parameter adaptation, in IEEE Congress on Evolutionary Computation (Cancun, México, 2013), pp. 1068–1074Google Scholar
  20. 20.
    F. Valdez, P. Melin, O. Castillo, Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making, in IEEE International Conference on Fuzzy Systems (2009), pp. 2114–2119Google Scholar
  21. 21.
    G.M. Mendez, O. Castillo, Interval type-2 TSK fuzzy logic systems using hybrid learning algorithm, in Fuzzy Systems, FUZZ’05. The 14th IEEE International Conference on (2005), pp. 230–235Google Scholar
  22. 22.
    O. Castillo, P. Melin, Design of intelligent systems with interval type-2 fuzzy logic, in Type-2 Fuzzy Logic: Theory and Applications (2008), pp. 53–76 Google Scholar
  23. 23.
    O. Castillo, P. Melin, E. Ramírez, J. Soria, Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system, Expert Sys. Appl. 39(3), 2947–2955 (2012)Google Scholar
  24. 24.
    L. Aguilar, P. Melin, O. Castillo, Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach, Appl. Soft Comput. 3(3), 209–219 (2003)Google Scholar
  25. 25.
    P. Melin, O. Castillo, Modelling, simulation and control of non-linear dynamical systems: an intelligent approach using soft computing and fractal theory, CRC Press, (2001)Google Scholar
  26. 26.
    P. Melin, CI Gonzalez, JR Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic, IEEE Trans. Fuzzy Sys. 22(6), 1515–1525 (2014)Google Scholar
  27. 27.
    P. Melin, O. Castillo, Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach, IEEE Trans. Industr. Electron. 48(5), 951–955 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Beatriz González
    • 1
  • Patricia Melin
    • 1
    Email author
  • Fevrier Valdez
    • 1
  • German Prado-Arechiga
    • 2
  1. 1.Tijuana Institute of Technology, Calzada Tecnologico s/nTijuanaMexico
  2. 2.Cardio-DiagnosticoTijuanaMexico

Personalised recommendations