Skip to main content

Rapid and Automated Analysis of Portable Flow Cytometer Data

  • Conference paper
  • First Online:
Recent Developments in Mechatronics and Intelligent Robotics (ICMIR 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 691))

Included in the following conference series:

  • 1247 Accesses

Abstract

The advent of mass portable cytometry has lead to an unprecedented increase demand for the automated platform of data analysis. To provide a practical method applied to portable devices, we propose a rapid and accurate approach. This approach, based on K-means, initializes the number of clustering using kernel density estimation and optimizes calculation efficiency with k-d tree. After merging by a two-segment line regression algorithm, the clustering groups closest to the true populations can be achieved. Two different experiments proved the method we proposed would provide a rapid and accurate analysis of the multidimensional data of portable flow cytometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boutrus, S., Greiner, C., Hwu, D., et al.: Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. J. Biomed. Opt. 12(2), 020507 (2007)

    Article  Google Scholar 

  2. Grafton, M.G., Zordan, M.D., Chuang, H.-S., et al.: Portable microfluidic cytometer for whole blood cell analysis. In: SPIE Proceedings, vol. 7593, pp. 1–8 (2010)

    Google Scholar 

  3. Friedman, B.: Counting white blood cells with a portable flow cytometry device. Clinical Lab Industry News, 11 April 2013

    Google Scholar 

  4. Xianwen, W., Feng, C., Zhi, C., et al.: Automated gating of portable cytometer data based on skew t mixture models. J. Mech. Med. Biol. 15(3), 1550033 (2015)

    Article  Google Scholar 

  5. Chester, C., Maecker, H.T.: Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195(3), 773–779 (2015)

    Article  Google Scholar 

  6. Pedreira, C.E., Costa, E.S., Lecrevisse, Q., et al.: Overview of clinical flow cytometry data analysis: recent advances and future challenges. Trends Biotechnol. 31(7), 415–425 (2013)

    Article  Google Scholar 

  7. Verschoor, C.P., Lellc, A., Bramson, J.L., et al.: An introduction to automated flow cytometry gating tools and their implementation. Hypothesis Theory 6, 380 (2015)

    Google Scholar 

  8. Gouttefangeas, C., Chan, C., Attig, S., et al.: Data analysis as a source of variability of the HLA-peptide multimer assay: from manual gating to automated recognition of cell clusters. Cancer Immunol. Immunother. 64(5), 585–598 (2015)

    Article  Google Scholar 

  9. Lee, S.X., McLachlan, G.J., Pyne, S.: Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure. Cytom. A 89(1), 30–43 (2016)

    Article  Google Scholar 

  10. Aghaeepour, N., Finak, G., Hoos, H., et al.: Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 10(3), 228–238 (2013)

    Article  Google Scholar 

  11. Chen, X., Hasan, M., Libri, V., et al.: Automated flow cytometric analysis across large numbers of samples and cell types. Clin. Immunol. 157(2), 249–260 (2015)

    Article  Google Scholar 

  12. Hasan, M., Beitz, B., Rouilly, V., et al.: Semi-automated and standardized cytometric procedures for multi-panel and multi-parametric whole blood immunophenotyping. Clin. Immunol. 157(2), 261–276 (2015)

    Article  Google Scholar 

  13. Lo, K., Brinkman, R.R., Gottardo, R.: Automated gating of flow cytometry data via robust model-based clustering. Cytom. A 73(4), 321–332 (2008)

    Article  Google Scholar 

  14. Finak, G., Bashashati, A., Brinkman, R., et al.: Merging mixture components for cell population identification in flow cytometry. Adv. Bioinform. 2009, 247646 (2009)

    Article  Google Scholar 

  15. Sorensen, T., Baumgart, S., Durek, P., et al.: immunoClust - an automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets. Cytom. Part A 87(7), 603–615 (2015)

    Article  Google Scholar 

  16. Rebhahn, J.A., Roumanes, D.R., Qi, Y., et al.: Competitive SWIFT cluster templates enhance detection of aging changes. Cytom. Part A 89(1), 59–70 (2016)

    Article  Google Scholar 

  17. Zare, H., Shooshtari, P., Gupta, A., et al.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform. 11, 403–419 (2010)

    Article  Google Scholar 

  18. Sugar, I.P., Sealfon, S.C.: Misty Mountain clustering: application to fast unsupervised flow cytometry gating. BMC Bioinform. 11, 502 (2010)

    Article  Google Scholar 

  19. Ge, Y., Sealfon, S.C.: FlowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics 28(15), 2052–2058 (2012)

    Article  Google Scholar 

  20. Malek, M., Taqhiyar, M.J., Chong, L., et al.: Misty Mountain: reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 31(4), 606–607 (2015)

    Article  Google Scholar 

  21. Mair, F., Hartmann, F.J., Mrdjen, D., et al.: The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 46(1), 34–43 (2016)

    Article  Google Scholar 

  22. Lujan, E., Zunder, E.R., Nq, Y.H., et al.: Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature 521(7552), 352–356 (2015)

    Article  Google Scholar 

  23. Murphy, R.F.: Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 6(4), 302–309 (1985)

    Article  Google Scholar 

  24. Duong, T., Hazelton, M.L.: Plug-in bandwidth matrices for bivariate kernel density estimation. Nonparametric Stat. 15(1), 17–30 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Duong, T.: ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21(7), 1–16 (2007)

    Article  Google Scholar 

  26. Arthur, D., Vassilvitskii, S.: k-means+: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  27. Hamerly, G., Elkan, C.: Learning the K in k-means. Adv. Neural. Inf. Process. Syst. 17, 281–288 (2004)

    Google Scholar 

  28. Kaufman, L., Rousseeuw, P.: Finding groups in data: an introduction to cluster analysis. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  29. Cooper, L.A., Kong, J., Gutman, D.A., et al.: Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images. Lab. Invest. 95(4), 366–376 (2015)

    Article  Google Scholar 

  30. Chen, Y.J., Chen, S.C., Wu, J.L.: A hybrid vector quantization combining a tree structure and a Voronoi diagram. Math. Probl. Eng. 2014, 1–6 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X. et al. (2018). Rapid and Automated Analysis of Portable Flow Cytometer Data. In: Qiao, F., Patnaik, S., Wang, J. (eds) Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2017. Advances in Intelligent Systems and Computing, vol 691. Springer, Cham. https://doi.org/10.1007/978-3-319-70990-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70990-1_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70989-5

  • Online ISBN: 978-3-319-70990-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics