Skip to main content

Christianity and Mathematics

  • Chapter
  • First Online:
The Future of Creation Order

Part of the book series: New Approaches to the Scientific Study of Religion ((NASR,volume 3))

Abstract

The trends discernible within the history of mathematics display a recurring one-sidedness. With an alternative non-reductionist ontology in mind this contribution commences by challenging the assumed objectivity and neutrality of mathematics. It is questioned by the history of mathematics, for in the latter Fraenkel et al. (Foundations of Set Theory, 2nd rev. ed., Amsterdam: North-Holland, 1973) distinguish three foundational crises: in ancient Greece with the discovery of incommensurability , after the invention of the calculus by Leibniz and Newton (problems entailed in the concept of a limit), and when it turned out that the idea of infinite totalities, employed to resolve the second foundational crisis, suffered from an inconsistent set concept. An alternative approach is to contemplate the persistent theme of discreteness and continuity further while distinguishing between the successive infinite and the at once infinite. Weierstrass, Dedekind, and Cantor define real numbers in terms of the idea of infinite totalities. Frege reverted to a geometrical source of knowledge while rejecting his own initial logicist position. Some theologians hold the view that infinity is a property of God and that theology therefore should mediate its introduction into mathematics. Avoiding the one-sidedness of arithmeticism (over-emphasizing number) and geometricism (over-emphasizing spatial continuity) will require that both the uniqueness of and mutual coherence between number and space is acknowledged. Two figures capture some of the essential features of such an alternative approach. Mediated by a Christian philosophy and a non-reductionist ontology, Christianity may therefore contribute to the inner development of mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “Will man zum Schluß ein kurzes Schlagwort, welches den lebendigen Mittelpunkt der Mathematik trifft, so darf man wohl sagen: sie ist die Wissenschaft des Unendlichen ” (Weyl 1966, 89).

  2. 2.

    “Lorsque les valeurs successivement attribuées à une même variable s’approchent indéfiniment d’une valeur fixe, de manière à finir par en différer aussi peu que l’on voudra, cette dernière est. appelée la limite de toutes autres”—quoted in Robinson (1966, 269).

  3. 3.

    In general, a number l is called the limit of the sequence (x n ) when for an arbitrary rational number є > 0 there exists a natural number n 0 such that │x n –l│ < є holds for all n ≥ n 0 (see Heine 1872, 178, 179, and in particular page 184 where a limit is described in slightly different terms). Consider the sequence n/n + 1 where n = 1, 2, 3, … (in other words the sequence 1/2, 2/3, 3/4, …). This sequence converges to the limit 1.

  4. 4.

    “Somit bleibt mir nichts Anderes übrig, als mit Hilfe der in §9 definierten reellen Zahlbegriffe einen möglichst allgemeinen rein arithmetischen Begriff eines Punktkontinuums zu versuchen ” (Cantor 1962, 192).

  5. 5.

    “Die entscheidende Erkenntnis des Aristoteles war, dass Unendlichkeit wie Kontinuität nur in der Potenz existieren, also keine eigentliche Aktualität besitzen und daher stets unvollendet bleiben. Bis auf Georg Cantor , der in der 2. Hälfte des 19. Jahrhunderts dieser These mit seiner Mengenlehre entgegentrat, in der er aktual unendliche Mannigfaltigkeiten betrachtete, ist die aristotelische Grundkonzeption von Unendlichkeit und Kontinuität das niemals angefochtene Gemeingut aller Mathematiker (wenn auch nicht aller Philosophen) geblieben ” (Becker 1964, 69).

  6. 6.

    “Aus dem Paradies, das Cantor uns geschaffen [hat], soll uns niemand vertreiben können ” (see Hilbert 1925, 170).

  7. 7.

    “In der Arithmetik … liegt kein Motiv zur Einführung von Aktual-Unendlichen vor ” (Lorenzen 1972, 159).

  8. 8.

    Nickel quotes Vern S. Poythress saying: “In exploring mathematics one is exploring the nature of God’s rule over the universe; i.e. one is exploring the nature of God Himself” (see Poythress 1976, 184).

  9. 9.

    See the quotation given in n. 4 above.

  10. 10.

    Bernays also consistently defended the position that continuity belongs to the core meaning of space and that the modern approach of Cantor and Weierstrass to mathematical analysis did not accomplish a complete arithmetization of the continuum (see Bernays [1976, 188] and also Strauss [2011a]).

  11. 11.

    At the young age of 25 Gödel astounded the mathematical world in 1931 by showing that no system of axioms is capable—merely by employing its own axioms—of demonstrating its own consistency (see Gödel 1931). Yourgrau remarks: “Not only was truth not fully representable in a formal theory, consistency, too, could not be formally represented ” (Yourgrau 2005, 68). The devastating effect of Gödel’s proof is strikingly captured in the assessment of Hermann Weyl : “It must have been hard on Hilbert , the axiomatist, to acknowledge that the insight of consistency is rather to be attained by intuitive reasoning which is based on evidence and not on axioms ” (Weyl 1970, 269).

  12. 12.

    Note that Bernays employs the term factual in the sense in which we want to employ it—referring to what is given in reality prior to human cognition.

  13. 13.

    Kattsoff defends a similar view where he discusses “intellectual objects” which are also characterized by him as “quasi-empirical” in nature (Kattsoff 1973, 33, 40).

  14. 14.

    Frege correctly remarks “that counting itself rests on a one-one correlation, namely between the number-words from 1 to n and the objects of the set ” (quoted in Dummett 1995, 144).

  15. 15.

    “Die hier gewonnenen Ergebnisse wird man auch dann würdigen, wenn man nicht der Meinung ist, daß die üblichen Methoden der klassischen Analysis durch andere ersetzt werden sollen. Zuzugeben ist, daß die klassische Begründung der Theorie der reellen Zahlen durch Cantor und Dedekind keine restlose Arithmetisierung bildet. Jedoch, es ist sehr zweifelhaft, ob eine restlose Arithmetisierung der Idee des Kontinuums voll gerecht werden kann. Die Idee des Kontinuums ist, jedenfalls ursprünglich, eine geometrische Idee. Der arithmetisierende Monismus in der Mathematik ist eine willkürliche These. Daß die mathematische Gegenständlichkeit lediglich aus der Zahlenvorstellung erwächst, ist keineswegs erwiesen. Vielmehr lassen sich vermutlich Begriffe wie diejenigen der stetigen Kurve und der Fläche, die ja insbesondere in der Topologie zur Entfaltung kommen, nicht auf die Zahlvorstellungen zurückführen.”

References

  • Becker, Oscar. 1964. Grundlagen der Mathematik in geschichtlicher Entwicklung. Freiburg: Alber.

    Google Scholar 

  • Bernays, Paul. 1976. Abhandlungen zur Philosophie der Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Beth, Evert. 1965. Mathematical Thought. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Boyer, Carl B. 1959. The History of the Calculus and Its Conceptual Development. New York: Dover.

    Google Scholar 

  • Brouwer, Luitzen Egbertus Jan. 1964. Consciousness, Philosophy, and Mathematics. In Philosophy of Mathematics, Selected Readings, ed. Paul Benacerraf and Hillary Putnam, 78–84. Oxford: Basil Blackwell.

    Google Scholar 

  • Cantor, Georg. 1962. Gesammelte Abhandlungen Mathematischen und Philosophischen Inhalts. Hildesheim: Georg Olms Verlagsbuchhandlung.

    Google Scholar 

  • Chase, Gene B. 1996. How Has Christian Theology Furthered Mathematics? In Facets of Faith and Science, The Role of Beliefs in Mathematics and the Natural Sciences: An Augustinian Perspective, ed. Jitse M. van der Meer, vol. 2, 193–216. New York: University of America Press.

    Google Scholar 

  • Dooyeweerd, Herman. 1997. A New Critique of Theoretical Thought, The Collected Works of Herman Dooyeweerd, Series A. Vols. 1−4. Lewiston: Edwin Mellen Press.

    Google Scholar 

  • Dummett, Michael A.E. 1978. Elements of Intuitionism. Oxford: Clarendon Press.

    Google Scholar 

  • ———. 1995. Philosophy of Mathematics. 2nd ed. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fern, Richard L. 2002. Nature, God and Humanity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fraenkel, Abraham. 1928. Einleitung in die Mengenlehre. 3rd ed. Heidelberg: Springer.

    Google Scholar 

  • ———. 1930. Das Problem des Unendlichen in der neueren Mathematik. Blätter für deutsche Philosophie 4 (1930/31): 279−297.

    Google Scholar 

  • Fraenkel, Abraham A., Yehoshua Bar-Hillel, and Azriel Levy. 1973. Foundations of Set Theory. With the Collaboration of Dirk van Dalen. 2nd rev. ed. Amsterdam: North-Holland.

    Google Scholar 

  • Frege, Gottlob. 1903. Grundgesetze der Arithmetik. Vol. 2. Jena: Verlag Hermann Pohle.

    Google Scholar 

  • ———. 1979. Posthumous Writings. Oxford: Basil Blackwell.

    Google Scholar 

  • Gödel, Kurt. 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme 1. Monatshefte für Mathematik und Physik 38: 173–198.

    Article  Google Scholar 

  • Grünbaum, Adolf. 1952. A Consistent Conception of the Extended Linear Continuum as an Aggregate of Unextended Elements. Philosophy of Science 19 (2): 288–306.

    Article  Google Scholar 

  • Heine, Eduard. 1872. Die Elemente der Functionenlehre. Journal für reine und angewandte Mathematik 74: 172–188.

    Article  Google Scholar 

  • Hersh, Reuben. 1997. What Is Mathematics Really? Oxford: Oxford University Press.

    Google Scholar 

  • Heyting, Arend. 1949. Spanningen in de wiskunde. Groningen/Batavia: P. Noordhoff.

    Google Scholar 

  • ———. 1971. Intuitionism: An Introduction, 3rd rev. ed. Amsterdam: North-Holland.

    Google Scholar 

  • Hilbert, David. 1925. Über das Unendliche. Mathematische Annalen 95: 161–190.

    Article  Google Scholar 

  • Husserl, Edmund. 1979. Aufsätze und Rezensionen (1890–1910). Husserliana: Edmund Husserl – Gesammelte Werke 22. Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Kattsoff, Louis O. 1973. On the Nature of Mathematical Entities. International Logic Review 7: 29–45.

    Google Scholar 

  • Kline, Morris. 1980. Mathematics: The Loss of Certainty. New York: Oxford University Press.

    Google Scholar 

  • Laugwitz, Detlef. 1986. Zahlen und Kontinuum: Eine Einführung in die Infinitesimalmathematik. Mannheim: B.I.-Wissenschaftsverlag.

    Google Scholar 

  • Longo, Giuseppe. 2001. The Mathematical Continuum: From Intuition to Logic. ftp://ftp.di.ens.fr/pub/users/longo/PhilosophyAndCognition/the-continuum.pdf. Accessed 19 Oct 2010.

  • Lorenzen, Paul. 1972. Das Aktual-Unendliche in der Mathematik. In Grundlagen der modernen Mathematik, ed. Herbert Meschkowski, 157–165. Darmstadt: Wissenschaftliche Buchgesellschaft.

    Google Scholar 

  • Nickel, James D. 2001. Mathematics: Is God Silent? Vallecito: Ross House Books.

    Google Scholar 

  • Plotinus. 1956. The Enneads, 2nd ed. Trans. Stephen MacKenna, Revised by D.S. Page. London: Faber & Faber.

    Google Scholar 

  • Poythress, Vern S. 1976. A Biblical View of Mathematics. In Foundations of Christian Scholarship: Essays in the Van Til Perspective, ed. Gary North, 158–188. Vallecito: Ross House Books.

    Google Scholar 

  • Reidemeister, Kurt. 1949. Das exakte Denken der Griechen. Beiträge zur Deutung von Euklid, Plato und Aristoteles. Hamburg: Reihe Libelli.

    Google Scholar 

  • Robinson, Abraham. 1966. Non-Standard Analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Stegmüller, Wolfgang. 1970. Main Currents in Contemporary German, British and American Philosophy. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Strauss, Danie. 2011a. Bernays, Dooyeweerd and Gödel – The Remarkable Convergence in Their Reflections on the Foundations of Mathematics. South African Journal of Philosophy 30 (1): 70–94.

    Article  Google Scholar 

  • ———. 2011b. Defining Mathematics. Acta Academica 4: 1–28.

    Google Scholar 

  • ———. 2014. What Is a Line? Axiomathes 24: 181–205. https://doi.org/10.1007/s10516-013-9224-5.

    Article  Google Scholar 

  • Wang, Hao. 1988. Reflections on Gödel. Cambridge, MA: MIT Press.

    Google Scholar 

  • Weyl, Hermann. 1919. Der circulus vitiosus in der heutigen Begründung der Analysis. Jahresberichte der Deutschen Mathematiker-Vereinigung 28: 85–92.

    Google Scholar 

  • ———. 1946. Mathematics and Logic: A Brief Survey Serving as Preface to a Review of The Philosophy of Bertrand Russell. The American Mathematical Monthly 53: 2–13.

    Article  Google Scholar 

  • ———. 1966. Philosophie der Mathematik und Naturwissenschaft, 3rd rev. and exp. ed. Munich/Vienna: R. Oldenbourg.

    Google Scholar 

  • ———. 1970. David Hilbert and His Mathematical Work. In Hilbert. With an Appreciation of Hilbert’s Mathematical Work by Hermann Weyl, ed. Constance Reid, 243–285. New York: George Allen & Unwin.

    Google Scholar 

  • Yourgrau, Palle. 2005. A World Without Time. The Forgotten Legacy of Gödel and Einstein. London: Penguin Books.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danie Strauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strauss, D. (2017). Christianity and Mathematics. In: Glas, G., de Ridder, J. (eds) The Future of Creation Order. New Approaches to the Scientific Study of Religion , vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-70881-2_5

Download citation

Publish with us

Policies and ethics