Advertisement

Effect of Enriched Ontology Structures on RDF Embedding-Based Entity Linking

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 755)

Abstract

RDF embeddings are recently used in Entity Linking systems for disambiguation of candidate entities to match the best mention and entity pairs. In this study, we evaluate the effect of enriched ontology structures for disambiguation task when RDF embeddings are used to identify semantic relatedness between knowledge base concepts. We generate a domain-specific core ontology and put new components upon previous ontology structures. In this way, we obtain four different enriched structures and transform them into RDF embeddings. Then, we observe which enriched structure has more importance to enhance the overall performance of RDF embeddings-based Entity Linking approaches. We select two well-known knowledge-base-agnostic approaches, including AGDISTIS and DoSeR and adapt them into RDF embeddings-based entity disambiguation. Finally, a domain-specific evaluation dataset is generated from Wikipedia to observe the effect of enriched structures on these adapted approaches.

Keywords

RDF embeddings RDF2Vec HITS PageRank 

References

  1. 1.
    Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015)CrossRefGoogle Scholar
  2. 2.
    Milne, D., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, New York, pp. 509–518. ACM (2008)Google Scholar
  3. 3.
    Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data. In: EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28–30, 2007, Prague, Czech Republic, pp. 708–716 (2007)Google Scholar
  4. 4.
    Ferragina, P., Scaiella, U.: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, New York, pp. 1625–1628. ACM (2010)Google Scholar
  5. 5.
    Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.: AGDISTIS - graph-based disambiguation of named entities using linked data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 457–471. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_29 Google Scholar
  6. 6.
    Zwicklbauer, S., Seifert, C., Granitzer, M.: DoSeR - a knowledge-base-agnostic framework for entity disambiguation using semantic embeddings. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 182–198. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34129-3_12 CrossRefGoogle Scholar
  7. 7.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013)Google Scholar
  8. 8.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems. I-Semantics 2011, New York, pp. 1–8. ACM (2011)Google Scholar
  9. 9.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. (TACL) 2, 231–244 (2014)Google Scholar
  10. 10.
    Piccinno, F., Ferragina, P.: From tagme to WAT: a new entity annotator. In: ERD 2014, Proceedings of the First ACM International Workshop on Entity Recognition & Disambiguation, July 11, 2014, Gold Coast, Queensland, Australia, pp. 55–62 (2014)Google Scholar
  11. 11.
    Navigli, R.: Babelnet and friends: a manifesto for multilingual semantic processing. Intelligenza Artificiale 7(2), 165–181 (2013)Google Scholar
  12. 12.
    Ernst, P., Siu, A., Weikum, G.: Knowlife: a versatile approach for constructing a large knowledge graph for biomedical sciences. BMC Bioinform. 16, 157–15713 (2015)CrossRefGoogle Scholar
  13. 13.
    Hassanzadeh, O., Consens, M.P.: Linked movie data base. In: Proceedings of the WWW 2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain, April 20, 2009 (2009)Google Scholar
  14. 14.
    Nguyen, D.B., Hoffart, J., Theobald, M., Weikum, G.: Aida-light: high-throughput named-entity disambiguation. In: Bizer, C., Heath, T., Auer, S., Berners-Lee, T. (eds.) LDOW, vol. 1184. CEUR Workshop Proceedings, CEUR-WS.org (2014)Google Scholar
  15. 15.
    Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  17. 17.
    Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-meza, B.: OntoQA: metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources (2005)Google Scholar
  18. 18.
    Lantow, B.: Ontometrics: application of on-line ontology metric calculation. In: Joint Proceedings of the BIR 2016 Workshops and Doctoral Consortium Co-located with 15th International Conference on Perspectives in Business Informatics Research (BIR 2016), Prague, Czech Republic, September 14–16, 2016 (2016)Google Scholar
  19. 19.
    Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46523-4_30 CrossRefGoogle Scholar
  20. 20.
    Ellis, J., Getman, J., Mott, J., Li, X., Griffitt, K., Strassel, S., Wright, J.: Linguistic resources for 2013 knowledge base population evaluations. In: Proceedings of the Sixth Text Analysis Conference, TAC 2013, Gaithersburg, Maryland, USA, November 18–19, 2013 (2013)Google Scholar
  21. 21.
    Li, X., Strassel, S., Ji, H., Griffitt, K., Ellis, J.: Linguistic resources for entity linking evaluation: from monolingual to cross-lingual. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23–25, 2012, pp. 3098–3105 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer EngineeringEge UniversityBornovaTurkey

Personalised recommendations