Abstract
Hand-guiding is a main functionality of collaborative robots, allowing to rapidly and intuitively interact and program a robot. Many applications require end-effector precision positioning during the teaching process. This paper presents a novel method for precision hand-guiding at the end-effector level. From the end-effector force/torque measurements the hand-guiding force/torque (HGFT) is achieved by compensating for the tools weight/inertia. Inspired by the motion properties of a passive mechanical system, mass subjected to coulomb/viscous friction, it was implemented a control scheme to govern the linear/angular motion of the decoupled end-effector. Experimental tests were conducted in a KUKA iiwa robot in an assembly operation.
Keywords
- Hand-guiding
- Collaborative robot
- End-effector
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Neto, P., Mendes, N.: Direct off-line robot programming via a common CAD package. Robot. Auton. Syst. 61(8), 896–910 (2013). https://doi.org/10.1016/j.robot.2013.02.005
Neto, P., Pereira, D., Pires, J.N., Moreira, A.P.: Real-time and continuous hand gesture spotting: an approach based on artificial neural networks. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 178–183 (2013). https://doi.org/10.1109/ICRA.2013.6630573
Simao, M.A., Neto, P., Gibaru, O.: Unsupervised gesture segmentation by motion detection of a real-time data stream. IEEE Trans. Ind. Inform. 13(2), 473–481 (2017). https://doi.org/10.1109/TII.2016.2613683
Haddadin, S., Albu-Schaffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28(11/12), 15071527 (2009). https://doi.org/10.1177/0278364909343970
Balasubramanian, R., Xu, L., Brook, P.D., Smith, J.R., Matsuoka, Y.: Physical human interactive guidance: identifying grasping principles from human-planned grasps. IEEE Trans. Robot. 28(4), 899–910 (2012). https://doi.org/10.1109/TRO.2012.2189498
Whitsell, B., Artemiadis, P.: Physical Human-Robot Interaction (pHRI) in 6 DOF with asymmetric cooperation. IEEE Access 5, 10834–10845 (2017). https://doi.org/10.1109/ACCESS.2017.2708658
Fujii, M., Murakami, H., Sonehara, M.: Study on application of a human-robot collaborative system using hand-guiding in a production line. IHI Eng. Rev. 49(1), 24–29 (2016)
Lee, S.D., Ahn, K.H., Song, J.B.: Torque control based sensorless hand guiding for direct robot teaching. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 745–75 (2017). https://doi.org/10.1109/IROS.2016.7759135
Ficuciello, F., Villani, L., Siciliano, B.: Variable impedance control of redundant manipulators for intuitive human robot physical interaction. IEEE Trans. Robot. 31(4), 850–863 (2015). https://doi.org/10.1109/TRO.2015.2430053
Kosuge, K., Yoshida, H., Fukuda, T.: Dynamic control for robot-human collaboration. In: Proceedings of the 2nd IEEE International Workshop on Robot and Human Communication, pp. 398–401 (1993). https://doi.org/10.1109/ROMAN.1993.367685
Geravand, M., Flacco, F., De Luca, A.: Human-robot physical interaction and collaboration using an industrial robot with a closed control architecture. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4000–4007 (2013). https://doi.org/10.1109/ICRA.2013.6631141
Hanses, M., Behrens, R., Elkmann, N.: Hand-guiding robots along predefined geometric paths under hard joint constraints. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–5 (2016). https://doi.org/10.1109/ETFA.2016.7733600
Acknowledgments
This research was partially supported by Portugal 2020 project DM4Manufacturing POCI-01-0145-FEDER-016418 by UE/FEDER through the program COMPETE 2020, the European Unions Horizon 2020 research and innovation programme under grant agreement No 688807 - ColRobot project, and the Portuguese Foundation for Science and Technology (FCT) SFRH/BD/131091/2017.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Safeea, M., Bearee, R., Neto, P. (2018). End-Effector Precise Hand-Guiding for Collaborative Robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-70836-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70835-5
Online ISBN: 978-3-319-70836-2
eBook Packages: EngineeringEngineering (R0)