Skip to main content

Movement Direction Estimation Using Omnidirectional Images in a SLAM Algorithm

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 693))

Included in the following conference series:

  • 2362 Accesses

Abstract

This work presents a method to estimate the movement direction of a mobile robot using only visual information, without any other additional sensor. This visual information is provided by a catadioptric system mounted on the robot and formed by a camera pointing towards a convex mirror. It provides the robot with omnidirectional images that contain information with a field of view of 360\(^\circ \) around the camera-mirror axis. A SLAM algorithm is presented to test the method that estimates the movement direction of the robot. This SLAM method uses two different global appearance descriptors to calculate the orientation of the robot and the distance between two different positions. The method to calculate the movement direction is based on landmarks extraction, using SURF features. A set of omnidirectional images has been considered to test the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Tuytelaars, T., Gool, L.: Surf: speeded up robust features. In: Computer Vision at ECCV, vol. 3951, pp. 404–417 (2006)

    Google Scholar 

  2. Berenguer, Y., Payá, L., Ballesta, M., Reinoso, O.: Position estimation and local mapping using omnidirectional images and global appearance descriptors. Sensors 15(10), 26368 (2015)

    Article  Google Scholar 

  3. Chang, C., Siagian, C., Itti, L.: Mobile robot vision navigation and localization using gist and saliency. In: IROS 2010, International Conference on Intelligent Robots and Systems, pp. 4147–4154 (2010)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005

    Google Scholar 

  5. Fernández, L., Payá, L., Reinoso, O., Jiménez, L., Ballesta, M.: A study of visual descriptors for outdoor navigation using google street view images. J. Sens. 2016 (2016)

    Google Scholar 

  6. Garcia-Fidalgo, E., Ortiz, A.: Vision-based topological mapping and localization methods: a survey. Robot. Auton. Syst. 64, 1–20 (2015)

    Article  Google Scholar 

  7. Hasegawa, M., Tabbone, S.: A shape descriptor combining logarithmic-scale histogram of radon transform and phase-only correlation function. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 182–186, September 2011

    Google Scholar 

  8. Hoang, T., Tabbone, S.: A geometric invariant shape descriptor based on the radon, fourier, and mellin transforms. In: 20th International Conference on Pattern Recognition (ICPR), pp. 2085–2088, August 2010

    Google Scholar 

  9. Kobayashi, K., Aoki, T., Ito, K., Nakajima, H., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. E87–A, 682–691 (2004)

    Google Scholar 

  10. Kuglin, C., Hines, D.: The phase correlation image alignment method. In: Proceedings of the IEEE, International Conference on Cybernetics and Society, pp. 163–165 (1975)

    Google Scholar 

  11. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3607–3613, May 2011

    Google Scholar 

  12. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV 1999, International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  13. Payá, L., Amorós, F., Fernández, L., Reinoso, O.: Performance of global-appearance descriptors in map building and localization using omnidirectional vision. Sensors 14(2), 3033–3064 (2014)

    Article  Google Scholar 

  14. Payá, L., Fernández, L., Gil, L., Reinoso, O.: Map building and monte carlo localization using global appearance of omnidirectional images. Sensors 10(12), 11468–11497 (2010)

    Article  Google Scholar 

  15. Radon, J.: Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten. Berichte Sachsische Akademie der Wissenschaften 69(1), 262–277 (1917)

    MATH  Google Scholar 

  16. Valiente, D., Gil, A., Fernández, L., Reinoso, O.: A comparison of EKF and SGD applied to a view-based SLAM approach with omnidirectional images. Robot. Auton. Syst. 62(2), 108–119 (2014)

    Article  Google Scholar 

  17. Winters, N., Gaspar, J., Lacey, G., Santos-Victor, J.: Omni-directional vision for robot navigation. In: IEEE Workshop on Omnidirectional Vision, pp. 21–28 (2000)

    Google Scholar 

  18. Wu, J., Zhang, H., Guan, Y.: An efficient visual loop closure detection method in a map of 20 million key locations. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 861–866, May 2014

    Google Scholar 

  19. Zhu, Q., Yeh, M.-C., Cheng, K.-T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1491–1498 (2006)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Spanish Government through the project DPI2016-78361-R (AEI/FEDER, UE) “Creación de Mapas Mediante Métodos de Apariencia Visual para la Navegación de Robots”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yerai Berenguer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berenguer, Y., Payá, L., Reinoso, O., Peidró, A., Jiménez, L.M. (2018). Movement Direction Estimation Using Omnidirectional Images in a SLAM Algorithm. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-70833-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70833-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70832-4

  • Online ISBN: 978-3-319-70833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics