Skip to main content

An Ontology Framework for Physics-Based Manipulation Planning

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 693)

Abstract

In manipulation planning, dynamic interactions between the objects and the robots play a significant role. In this scope, dynamic engines allow to consider them within motion planners, giving rise to physics-based motion planners that consider the purposeful manipulation of objects. In this context, the representation of knowledge regarding how the objects have to be manipulated eases a semantic-based reasoning that reduces the computational cost of physics-based planners. In this work, an ontology framework is proposed to organize the knowledge needed for physics-based manipulation planning, allowing to derive manipulation regions and behaviors. A semantic map is constructed to categorize and assign the manipulation constraints based on the robot, the objects and the type of actions. The ontology framework can be queried using Description Language to obtain the necessary knowledge for the robot to manipulate the objects in its environment.

Keywords

  • Physically-based Manipulation
  • Ontological Framework
  • Manipulation Planning
  • Constraint Manipulation
  • Pushable Object

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

J. Rosell—This work was partially supported by the Spanish Government through the projects DPI2013-40882-P and DPI2016-80077-R.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70833-1_37
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-70833-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Weld, D.S., De Kleer, J.: Readings in Qualitative Reasoning About Physical Systems. Morgan Kaufmann, San Francisco (2013)

    Google Scholar 

  2. Kunze, L., Dolha, M.E., Guzman, E., Beetz, M.: Simulation-based temporal projection of everyday robot object manipulation. In: The 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 107–114 (2011)

    Google Scholar 

  3. Muhayyuddin, Akbari, A., Rosell, J.: Ontological physics-based motion planning for manipulation. In: The 20th IEEE International Conference on Emerging Technologies and Factory Automation (2015)

    Google Scholar 

  4. Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(3), 492–509 (2011)

    CrossRef  Google Scholar 

  5. Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and task planning. Int. J. Robot. Res. 28(1), 104–126 (2009)

    CrossRef  Google Scholar 

  6. Bateman, J.A., Farrar, S.: Modelling models of robot navigation using formal spatial ontology. In: Spatial Cognition, pp. 366–389. Springer (2004)

    Google Scholar 

  7. Chatterjee, R., Takao, I., Matsuno, F., Tadokoro, S.: Robot description ontology and bases for surface locomotion evaluation. In: IEEE Workshop on Safety, Security and Rescue Robotics, pp. 242–247 (2005)

    Google Scholar 

  8. Mozos, O.M., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. Robot. Auton. Syst. 55(5), 391–402 (2007)

    CrossRef  Google Scholar 

  9. Schlenoff, C., Prestes, E., Gonçalves, P.S., Abel, M., Amirat, Y., Balakirsky, S., Barreto, M., Carbonera, J., Chibani, A., Fiorini, S.R., et al.: IEEE standard ontologies for robotics and automation (2015)

    Google Scholar 

  10. Fiorini, S.R., Bermejo-Alonso, J., Gonçalves, P., de Freitas, E.P., Alarcos, A.O., Olszewska, J.I., Prestes, E., Schlenoff, C., Ragavan, S.V., Redfield, S., et al.: A suite of ontologies for robotics and automation [industrial activities]. IEEE Robot. Autom. Mag. 24(1), 8–11 (2017)

    CrossRef  Google Scholar 

  11. Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y., Tomiyama, T.: Physical concept ontology for the knowledge intensive engineering framework. Adv. Eng. Inf. 18(2), 95–113 (2004)

    CrossRef  Google Scholar 

  12. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., et al.: Kaon towards a large scale semantic web. In: E-Commerce and Web Technologies, pp. 231–248 (2002)

    Google Scholar 

  13. Akbari, A., Muhayyuddin, Rosell, J.: Reasoning-based evaluation of manipulation actions for efficient task planning. In: Robot 2015: Second Iberian Robotics Conference, pp. 69–80. Springer (2016)

    Google Scholar 

  14. Tosello, E., Fan, Z., Castro, A.G., Pagello, E.: Cloud-Based Task Planning for Smart Robots, pp. 285–300. Springer International Publishing, Cham (2017)

    Google Scholar 

  15. Alirezaie, M.: Bridging the Semantic Gap between Sensor Data and Ontological Knowledge. Ph.D. thesis, Örebro university (2015)

    Google Scholar 

  16. Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, Palomo, L., García, N.: The kautham project: a teaching and research tool for robot motion planning. In: Proceedings of the IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8, September 2014

    Google Scholar 

  17. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)

    CrossRef  Google Scholar 

  18. Antoniou, G., van Harmelen, F.: Web ontology language: OWL, pp. 67–92. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Diab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Diab, M., Muhayyuddin, Akbari, A., Rosell, J. (2018). An Ontology Framework for Physics-Based Manipulation Planning. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-70833-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70833-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70832-4

  • Online ISBN: 978-3-319-70833-1

  • eBook Packages: EngineeringEngineering (R0)