Skip to main content

Monotonicity-Based Regularization for Phantom Experiment Data in Electrical Impedance Tomography

  • Chapter
  • First Online:
New Trends in Parameter Identification for Mathematical Models

Part of the book series: Trends in Mathematics ((TM))

Abstract

In electrical impedance tomography, algorithms based on minimizing the linearized-data-fit residuum have been widely used due to their real-time implementation and satisfactory reconstructed images. However, the resulting images usually tend to contain ringing artifacts. In this work, we shall minimize the linearized-data-fit functional with respect to a linear constraint defined by the monotonicity relation in the framework of real electrode setting. Numerical results of standard phantom experiment data confirm that this new algorithm improves the quality of the reconstructed images as well as reduce the ringing artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Adler, R. Guardo, Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15(2), 170–179 (1996)

    Google Scholar 

  2. A. Adler, W.R. Lionheart, Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)

    Google Scholar 

  3. A. Adler, J.H. Arnold, R. Bayford, A. Borsic, B. Brown, P. Dixon, T.J. Faes, I. Frerichs, H. Gagnon, Y. Gärber, et al., GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 30(6), S35 (2009)

    Google Scholar 

  4. R.G. Aykroyd, M. Soleimani, W.R. Lionheart, Conditional Bayes reconstruction for ERT data using resistance monotonicity information. Meas. Sci. Technol. 17(9), 2405 (2006)

    Google Scholar 

  5. M. Azzouz, M. Hanke, C. Oesterlein, K. Schilcher, The factorization method for electrical impedance tomography data from a new planar device. Int. J. Biomed. Imaging 2007, 83016 (2007)

    Google Scholar 

  6. B. Brown, A. Seagar, The Sheffield data collection system. Clin. Phys. Physiol. Meas. 8(4A), 91 (1987)

    Google Scholar 

  7. M. Cheney, D. Isaacson, J. Newell, S. Simske, J. Goble, NOSER: an algorithm for solving the inverse conductivity problem. Int. J. Imaging Syst. Technol. 2(2), 66–75 (1990)

    Google Scholar 

  8. K.S. Cheng, D. Isaacson, J. Newell, D.G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36(9), 918–924 (1989)

    Google Scholar 

  9. M.K. Choi, B. Harrach, J.K. Seo, Regularizing a linearized EIT reconstruction method using a sensitivity-based factorization method. Inverse Probl. Sci. Eng. 22(7), 1029–1044 (2014)

    Google Scholar 

  10. H. Garde, S. Staboulis, Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. arXiv preprint arXiv:1512.01718 (2015)

    Google Scholar 

  11. B. Gebauer, Localized potentials in electrical impedance tomography. Inverse Probl. Imaging 2(2), 251–269 (2008)

    Google Scholar 

  12. M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, ed. by V. Blondel, S. Boyd, H. Kimura. Lecture Notes in Control and Information Sciences (Springer, Berlin, 2008), pp. 95–110

    Google Scholar 

  13. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming, version 2.1 (2014), http://cvxr.com/cvx

  14. M. Hanke, A. Kirsch, Sampling methods, in Handbook of Mathematical Models in Imaging, ed. by O. Scherzer (Springer, Berlin, 2011), pp. 501–550

    Google Scholar 

  15. M. Hanke, B. Harrach, N. Hyvönen, Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21(06), 1395–1413 (2011)

    Google Scholar 

  16. B. Harrach, Recent progress on the factorization method for electrical impedance tomography. Comput. Math. Methods Med. 2013, 425184 (2013)

    Google Scholar 

  17. B. Harrach, Interpolation of missing electrode data in electrical impedance tomography. Inverse Probl. 31(11), 115008 (2015)

    Google Scholar 

  18. B. Harrach, M.N. Minh, Enhancing residual-based techniques with shape reconstruction features in electrical impedance tomography. Inverse Probl. 32(12), 125002 (2016)

    Google Scholar 

  19. B. Harrach, J.K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42(4), 1505–1518 (2010)

    Google Scholar 

  20. B. Harrach, M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6), 3382–3403 (2013)

    Google Scholar 

  21. B. Harrach, M. Ullrich, Resolution guarantees in electrical impedance tomography. IEEE Trans. Med. Imaging 34(7), 1513–1521 (2015)

    Google Scholar 

  22. B. Harrach, J.K. Seo, E.J. Woo, Factorization method and its physical justification in frequency-difference electrical impedance tomography. IEEE Trans. Med. Imaging 29(11), 1918–1926 (2010)

    Google Scholar 

  23. B. Harrach, E. Lee, M. Ullrich, Combining frequency-difference and ultrasound modulated electrical impedance tomography. Inverse Probl. 31(9), 095003 (2015)

    Google Scholar 

  24. M. Ikehata, Size estimation of inclusion. J. Inverse Ill-Posed Probl. 6(2), 127–140 (1998)

    Google Scholar 

  25. H. Kang, J.K. Seo, D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size. SIAM J. Math. Anal. 28(6), 1389–1405 (1997)

    Google Scholar 

  26. T.I. Oh, K.H. Lee, S.M. Kim, H. Koo, E.J. Woo, D. Holder, Calibration methods for a multi-channel multi-frequency EIT system. Physiol. Meas. 28(10), 1175 (2007)

    Google Scholar 

  27. T.I. Oh, E.J. Woo, D. Holder, Multi-frequency EIT system with radially symmetric architecture: KHU Mark1. Physiol. Meas. 28(7), S183 (2007)

    Google Scholar 

  28. T.I. Oh, E.J. Woo, D. Holder, Multi-frequency EIT system with radially symmetric architecture: KHU Mark1. Physiol. Meas. 28, S183–S196 (2007)

    Google Scholar 

  29. T.I. Oh, H. Wi, D.Y. Kim, P.J. Yoo, E.J. Woo, A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2. Physiol. Meas. 32(7), 835 (2011)

    Google Scholar 

  30. A. Tamburrino, Monotonicity based imaging methods for elliptic and parabolic inverse problems. J. Inverse Ill-Posed Probl. 14(6), 633–642 (2006)

    Google Scholar 

  31. A. Tamburrino, G. Rubinacci, A new non-iterative inversion method for electrical resistance tomography. Inverse Probl. 18(6), 1809 (2002)

    Google Scholar 

  32. H. Wi, H. Sohal, A.L. McEwan, E.J. Woo, T.I. Oh, Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring. IEEE Trans. Biomed. Circuits Syst. 8(1), 119–128 (2014)

    Google Scholar 

  33. L. Zhou, B. Harrach, J.K. Seo, Monotonicity-based electrical impedance tomography lung imaging. Preprint (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank Professor Eung Je Woo’s EIT research group for the iirc phantom data set. MNM thanks the Academy of Finland (Finnish Center of Excellence in Inverse Problems Research) for financial support of the project number 273979. During part of the preparation of this work, MNM worked at the Department of Mathematics of the Goethe University Frankfurt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Harrach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrach, B., Minh, M.N. (2018). Monotonicity-Based Regularization for Phantom Experiment Data in Electrical Impedance Tomography. In: Hofmann, B., Leitão, A., Zubelli, J. (eds) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70824-9_6

Download citation

Publish with us

Policies and ethics