Skip to main content

Convex Regularization of Discrete-Valued Inverse Problems

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

This work is concerned with linear inverse problems where a distributed parameter is known a priori to only take on values from a given discrete set. This property can be promoted in Tikhonov regularization with the aid of a suitable convex but nondifferentiable regularization term. This allows applying standard approaches to show well-posedness and convergence rates in Bregman distance. Using the specific properties of the regularization term, it can be shown that convergence (albeit without rates) actually holds pointwise. Furthermore, the resulting Tikhonov functional can be minimized efficiently using a semi-smooth Newton method. Numerical examples illustrate the properties of the regularization term and the numerical solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Bae, X.C. Tai, Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation (Springer, Berlin/Heidelberg, 2009), pp. 1–13, http://doi.org/10.1007/978-3-642-02256-2_1

    MATH  Google Scholar 

  2. V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces. Springer Monographs in Mathematics, 4th edn. (Springer, Dordrecht, 2012). http://doi.org/10.1007/978-94-007-2247-7

  3. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2011). http://doi.org/10.1007/978-1-4419-9467-7

  4. M. Bergounioux, F. Tröltzsch, Optimality conditions and generalized bang-bang principle for a state-constrained semilinear parabolic problem. Numer. Funct. Anal. Optim. 17(5–6), 517–536 (1996). htttp://doi.org/10.1080/01630569608816708

    Google Scholar 

  5. L.M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Burger, S. Osher, Convergence rates of convex variational regularization. Inverse Prob. 20(5), 1411 (2004). http://doi.org/10.1088/0266-5611/20/5/005

  7. X. Cai, R. Chan, T. Zeng, A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imag. Sci. 6(1), 368–390 (2013). http://doi.org/10.1137/120867068

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Clason, K. Kunisch, Multi-bang control of elliptic systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(6), 1109–1130 (2014). http://doi.org/10.1016/j.anihpc.2013.08.005

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Clason, K. Kunisch, A convex analysis approach to multi-material topology optimization. ESAIM: Math. Model. Numer. Anal. 50(6), 1917–1936 (2016). http://doi.org/10.1051/m2an/2016012

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Clason, C. Tameling, B. Wirth, Vector-valued multibang control of differential equations (2016). arXiv 1611(07853). http://www.arxiv.org/abs/1611.07853

  11. C. Clason, K. Ito, K. Kunisch, A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM Control, Optimisation and Calculus of Variations 22(2), 581–609 (2016). http://doi.org/10.1051/cocv/2015017

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Ekeland, R. Témam, Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28 (SIAM, Philadelphia, 1999). http://doi.org/10.1137/1.9781611971088

  13. J. Flemming, B. Hofmann, Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities. Inverse Prob. 27(8), 085001 (2011). http://doi.org/10.1088/0266-5611/27/8/085001

  14. B. Goldluecke, D. Cremers, Convex relaxation for multilabel problems with product label spaces (Springer, Berlin/Heidelberg, 2010), pp. 225–238. http://doi.org/10.1007/978-3-642-15555-0_17

    Google Scholar 

  15. B. Hofmann, B. Kaltenbacher, C. Pöschl, O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Prob. 23(3), 987–1010 (2007). http://doi.org/10.1088/0266-5611/23/3/009

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Ishikawa, Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003). http://doi.org/10.1109/TPAMI.2003.1233908

    Article  Google Scholar 

  17. K. Ito, B. Jin, Inverse Problems: Tikhonov Theory and Algorithms. Series on Applied Mathematics, vol. 22 (World Scientific, Singapore, 2014). http://doi.org/10.1142/9789814596206_0001

  18. K. Ito, K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, vol. 15 (SIAM, Philadelphia, PA, 2008). http://doi.org/10.1137/1.9780898718614

    MATH  Google Scholar 

  19. J. Lellmann, C. Schnörr, Continuous multiclass labeling approaches and algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096 (2011). http://doi.org/10.1137/100805844

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Resmerita, Regularization of ill-posed problems in Banach spaces: convergence rates. Inverse Prob. 21(4), 1303 (2005). http://doi.org/10.1088/0266-5611/21/4/007

  21. O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, F. Lenzen, Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167 (Springer, Cham, 2009). http://doi.org/10.1007/978-0-387-69277-7

  22. W. Schirotzek, Nonsmooth Analysis. Universitext (Springer, Berlin, 2007). http://doi.org/10.1007/978-3-540-71333-3

    Book  MATH  Google Scholar 

  23. T. Schuster, B. Kaltenbacher, B. Hofmann, K.S. Kazimierski, Regularization Methods in Banach Spaces. Radon Series on Computational and Applied Mathematics, vol. 10 (De Gruyter, Berlin, 2012). http://doi.org/10.1515/9783110255720

  24. F. Tröltzsch, A minimum principle and a generalized bang-bang principle for a distributed optimal control problem with constraints on control and state. Z. Angew. Math. Mech. 59(12), 737–739 (1979). http://doi.org/10.1002/zamm.19790591208

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Translated from the German by Jürgen Sprekels (American Mathematical Society, Providence, 2010). http://doi.org/10.1090/gsm/112

    Book  Google Scholar 

  26. M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. MOS-SIAM Series on Optimization, vol. 11 (SIAM, Philadelphia, PA, 2011). http://doi.org/10.1137/1.9781611970692

  27. L.A. Vese, T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002). http://doi.org/10.1023/A:1020874308076

    Article  MATH  Google Scholar 

  28. D. Wachsmuth, G. Wachsmuth, Regularization error estimates and discrepancy principle for optimal control problems with inequality constraints. Control. Cybern. 40(4), 1125–1158 (2011)

    MathSciNet  MATH  Google Scholar 

  29. G. Wachsmuth, D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM Control Optim. Calc. Var. 17(3), 858–886 (2011). http://doi.org/10.1051/cocv/2010027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Science Fund (DFG) under grant CL 487/1-1. The authors also wish to thank Daniel Wachsmuth for several helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Clason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clason, C., Do, T.B.T. (2018). Convex Regularization of Discrete-Valued Inverse Problems. In: Hofmann, B., Leitão, A., Zubelli, J. (eds) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70824-9_2

Download citation

Publish with us

Policies and ethics