Skip to main content

Multiple Scattering of Light in Ordered Particulate Media

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

The methods to describe electromagnetic wave interaction with random and highly ordered particulate media as applied to solve problems of optics, photonics, and optoelectronics are presented. The approach to find spatial arrangement of particles forming the planar crystal with imperfect lattice is described. It is used to simulate light absorption by the solar cells and transmittance of antireflecion coatings, selective reflectors, multispectral filters based on periodic, quasiperiodic and aperiodic structures of monolayers; to solve the inverse scattering problem—retrieving the refractive index of particles forming the 3D photonic crystal. A number of scattering problem solutions for partially ordered particulate layers is considered. In particular: angular distribution of light scattered by monolayer, small-angle light scattering and transmission by polymer dispersed liquid crystal film, quenching effect for coherent component of transmitted light, and the spatial optical noise. Features in scattering and transmittance by correlated particles in liquating glasses are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams ZR, Niv A, Zhang X (2011) Solar energy enhancement using downconverting particles: a rigorous approach. J Appl Phys 109:114905-1–9

    Article  ADS  Google Scholar 

  • Albada M, Lagendijk A (1985) Observation of weak localization of light in a random medium. Phys Rev Lett 55:2692–2695

    Article  ADS  Google Scholar 

  • Alfrey T et al (1954) Optical properties of uniform particle-size latexes. Opt Soc Am 44(8):603–609

    Article  ADS  Google Scholar 

  • Almpanis E et al (2012) Diffractive chains of plasmonic nanolenses: combining near-field focusing and collective enhancement mechanisms. Opt Lett 37(22):4624–4626

    Article  ADS  Google Scholar 

  • Andreev NS, Aver’yanov VI, Voishvillo NA (1960) Structural interpretation of the anomalous scattering of visible light in sodium borosilicate glasses. Phys Solid State (Fiz Tverd Tela) 2:1011–1021 (in Russian)

    Google Scholar 

  • Andueza A et al (2010) Geometry influence on the transmission spectra of dielectric single layers of spheres with different compactness. J Appl Phys 107:124902-1–7

    Article  ADS  Google Scholar 

  • Andueza A et al (2011) Disorder effect in the transmission spectra of a noncompact single layer of dielectric spheres derived from microwave spectroscopy. Appl Opt 50(31):G91–G97

    Article  Google Scholar 

  • Andueza A, Sevilla J (2007) Non compact single-layers of dielectric spheres electromagnetic behaviour. Opt Quantum Electron 39:311–320

    Article  Google Scholar 

  • Andueza A, Echeverría R, Sevilla J (2008) Evolution of the electromagnetic modes of a single layer of dielectric spheres with compactness. J Appl Phys 104:043103-1–5

    Article  ADS  Google Scholar 

  • Andueza A, Morales P, Sevilla J (2012) Photonic band effect in single-layers of high refractive index spheres of different compactness. J Appl Phys 111:104902-1–7

    Article  ADS  Google Scholar 

  • Ao CO, Kong JA (2002) Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids. J Opt Soc Am A 19(6):1145–1156

    Article  ADS  Google Scholar 

  • Apresian LA, Kravtsov YuA (1983) Radiative transfer theory: statistical and wave aspects. Nauka, Moscow, 216 p (in Russian)

    Google Scholar 

  • Arfken GV, Weber HJ, Harris FE (2012) Mathematical methods for physicists, 7th edn. Academic Press, Waltham, p 1205

    MATH  Google Scholar 

  • Babenko VA, Astafyeva LG, Kuzmin VN (2003) Electromagnetic scattering in disperse media: inhomogeneous and anisotropic particles. Springer, Berlin, p 434

    Google Scholar 

  • Bachelard R et al (2012) Resonances in Mie scattering by an inhomogeneous atomic cloud. Europhys Lett 97:14004-p1-p6

    Google Scholar 

  • Balestreri A, Andreani L, Agio M (2006) Optical properties and diffraction effects in opal photonic crystals. Phys Rev E 74:036603–8

    Article  ADS  Google Scholar 

  • Bapat A et al (2004) Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys Control Fusion 46:B97–B109

    Article  Google Scholar 

  • Barabanenkov YuN (2003) Transfer of trapped electromagnetic radiation in an ensemble of resonant mesoscopic scatterers. In: Wave scattering in complex media: from theory to applications, vol 107. NATO Science Series. pp 415–460

    Google Scholar 

  • Barabanenkov YuN (1976) Multiple scattering of waves by ensemble of particles and the radiative transport. Sov Phys Uspekhi 18:673–689

    Article  ADS  Google Scholar 

  • Barabanenkov YuN, Finkelberg VM (1968) Radiation transport equation for correlated scatterers. Sov Phys JETP 26:587–591

    ADS  Google Scholar 

  • Barcikowski S, Hahn A, Kabashin A, Chichkov B (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55

    Article  ADS  Google Scholar 

  • Barrera RG, Reyes-Coronado A, García-Valenzuela A (2007) Nonlocal nature of the electrodynamic response of colloidal systems. Phys Rev B 75(18):184202-1–19

    Google Scholar 

  • Baryshev AV, Kaplyanskii AA, Kosobukin VA, Limonov MF, Samusev KB, Usvyat DE (2003) Bragg diffraction of light in synthetic opals. Phys Solid State 45:459–471. https://doi.org/10.1134/1.1562231

  • Baryshev AV et al (2007) Resonant behavior and selective switching of stop bands in three dimensional photonic crystals with inhomogeneous components. Phys Rev Lett 99:063906-1–4

    Article  ADS  Google Scholar 

  • Baryshev AV et al (2011) Propagation of polarized light in opals: amplitude and phase anisotropy. J Exp Theor Phys 112(3):361–369

    Article  ADS  Google Scholar 

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley, New York

    MATH  Google Scholar 

  • Berdnik VV, Mukhamedyarov RD (2001) Radiative transfer in plant leaves. Opt Spectrosc 90:580–591. https://doi.org/10.1134/1.1366754

  • Berdnik VV, Loiko VA (1999) Modelling of radiative transfer in disperse layers of a medium with a highly stretched phase function. JQSRT 61(1):49–57

    Article  ADS  Google Scholar 

  • Berdnik V, Loiko V (2004) Features of the angular structure of light scattered by a layer of partially ordered soft particles. J Quant Spectrosc Radiat Transf 88:111–123

    Article  ADS  Google Scholar 

  • Berdnik V, Loiko V (2006) Angular structure of radiation scattered by a disperse layer with a high concentration of optically soft particles. Quantum Electron 36(11):1016–1022

    Article  ADS  Google Scholar 

  • Berdnik VV, Loiko VA (2011) Light scattering by ensemble of nonabsorbing correlated two-layered particles: specific feature for spectral dependence of extinction coefficient. Appl Opt 50(22):4246–4251

    Article  ADS  Google Scholar 

  • Berry CR (1971) On the need to apply electromagnetic theoryof optical behavior of photographic emulsions. Phtogr Sci Eng 15(3):394–399

    Google Scholar 

  • Bertone JF et al (1999) Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals. Phys Rev Lett 83(2):300–303

    Article  ADS  Google Scholar 

  • Blewin WR, Brown WJ (1961) Effect of particle on reflectance of semi-infinite diffusers. JOSA 51:129–134

    Article  ADS  Google Scholar 

  • Blinov LM (2011) Structure and properties of liquid crystals. Springer, Dordrecht, p 439

    Book  Google Scholar 

  • Bogomolov VN, Parfen’eva LS, Prokof’ev AV, Smirnov IA, Samoilovich SM, Jezowskii A, Mucha J, Miserek H (1995) Influence of periodic cluster superstructure on thermal conductivity of amorphous silica. Phys Solid State 37(11):1874

    Google Scholar 

  • Bogomolov VN et al (1997) Photonic band gap phenomenon and optical properties of artificial opals. Phys Rev E 55(6):7619–7625

    Article  ADS  Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New-York, p 530

    Google Scholar 

  • Boriskina SV, Gopinath A, Dal Negro L (2008) Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures. Opt Exp 16:18813–18826

    Article  ADS  Google Scholar 

  • Born M, Wolf E (2002) Principles of optics, 7th edn. Press, Cambridge, Univ, p 952

    Google Scholar 

  • Borovoi AG (2006) Multiple scattering of short waves by uncorrelated and correlated scatterers. In: Kokhanovsky AA (ed) Light scattering reviews. single and multiple light scattering. Springer, Chichester, pp 181–252

    Google Scholar 

  • Bringi VN, Varadan VV, Varadan VK (1982) The effects on pair correlation function of coherent wave attenuation in discrete random media. IEEE Trans Antennas Propag AP-30(4):805–808

    Google Scholar 

  • Brown GS (1980) Coherent wave propagation through a sparse concentration of particles. Radio Sci 15(3):705–710

    Article  ADS  MathSciNet  Google Scholar 

  • Bruning JH, Lo, YT (1971a) Multiple scattering of EM waves by spheres I - multipole expansion and ray-optical solutions. IEEE Trans Antennas Propag AP-19(3):378–390

    Google Scholar 

  • Bruning, JH, Lo YT (1971b) Multiple scattering of EM waves by spheres II - numerical and experimental results. IEEE Trans Antennas Propag AP-19(3):391–400

    Google Scholar 

  • Busch K, John S (1998) Photonic band gap formation in certain self-organizing systems. Phys Rev E 58(3):3896–3908

    Article  ADS  Google Scholar 

  • Campos-Fernández C et al (2011) Visible light reflection spectra from cuticle layered materials. Opt Mater Exp 1:85–100

    Article  Google Scholar 

  • Cassagne D, Reynolds A, Jouanin C (2000) Modelling of 3D photonic crystals based on opals. Opt Quantum Electron 32:923–933

    Article  Google Scholar 

  • Cassier M, Hazard C (2013) Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: mathematical justification of the Foldy-Lax model. Wave Motion 50:18–28

    Article  MathSciNet  MATH  Google Scholar 

  • Centurioni E (2005) Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl Opt 44(35):7532–7539

    Article  ADS  Google Scholar 

  • Challa DP, Hu G, Sini M (2014) Multiple scattering of electromagnetic waves by finitely many point-like obstacles. Math Models Methods Appl Sci 24(5):863–899

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar S (1960) Radiative transfer. Dover, New York, p 393

    Google Scholar 

  • Chaumet PC, Rahmani A, Bryant GW (2003) Generalization of the coupled dipole method to periodic structures. Phys Rev B 67(16):165404-1-5

    Google Scholar 

  • Chen H et al (2006) Effect of disorder on self-collimated beam in photonic crystal. Physica E 35:64–68

    Article  ADS  Google Scholar 

  • Christofi A, Stefanou N (2014) Layer multiple scattering calculations for nonreciprocal photonic structures. Int J Mod Phys B 28(2):1441012-1-16

    Google Scholar 

  • Chwolson O (1889) Grundzüge einer mathematischen Theorie der inneren Diffusion des Lichtes. Bull l’Acad Impériale Sci St Pétersbourg 33:221–256

    Google Scholar 

  • Conwell PR, Barber PW, Rushforth CK (1984) Resonant spectra of dielectric spheres. J Opt Soc Am A 1:62–67

    Article  ADS  Google Scholar 

  • Cooray MFR, Ciric IR (1989) Electromagnetic wave scattering by a system of two spheroids of arbitrary orientation. IEEE Trans Antennas Propag 37(5):608–618

    Article  ADS  Google Scholar 

  • Davis VA, Schwartz L (1985) Electromagnetic propagation in close-packed disordered suspensions. Phys Rev B 31:5155–5165

    Article  ADS  Google Scholar 

  • de Vries P, van Coevorden DV, Lagendijk A (1998) Point scatterers for classical waves. Rev Mod Phys 70(2):447–466

    Article  ADS  Google Scholar 

  • Debenham M, Dew GD (1981) The refractive index of toluene in the visible spectral region. J Phys E Sci Instrum 14:544–545

    Article  ADS  Google Scholar 

  • Deinega A et al (2011) Minimizing light reflection from dielectric textured surfaces. J Opt Soc Am A 28:770–777

    Article  ADS  Google Scholar 

  • Deparis O et al (2006) Colorselecting reflectors inspired from biological periodic multilayer structures. Opt Exp 14:3547–3555

    Article  ADS  Google Scholar 

  • Dick VP, Ivanov AP, Loiko VA (1985) Density effects of a dispersive substance on the coherent component of transmitted radiation. J Appl Spectrosc 43(4):1183–1187. https://doi.org/10.1007/BF00662341

  • Dick VP, Ivanov AP, Loiko VA (1986) Transfer of images by dispersion layers with high concentrations of optically soft particles. J Appl Spectrosc 44(1):111–114. https://doi.org/10.1007/BF00658334

  • Dick VP, Ivanov AP, Loiko VA (1987a) Characteristics of the attenuation of radiation by a monolayer of discrete scatterers. J Appl Spectrosc 47(3):966–971. https://doi.org/10.1007/BF00659446

  • Dick VP, Ivanov AP, Loiko VA (1987b) Features of light scattering by a single-row layer of particles. J Appl Spectrosc 46:197–202. https://doi.org/10.1007/BF00665564

  • Dick VP, Loiko VA (2001a) Light attenuation by disperse layers with a high concentration of oriented anisotropic spherical particles. Opt Spectrosc 91:618–622. https://doi.org/10.1134/1.1412682

  • Dick VP, Loiko VA (2001b) Model for coherent transmittance calculation for polymer dispersed liquid crystal films. Liquid Cryst 28:1193–1198

    Google Scholar 

  • Dick VP, Loiko VA (2014) Transmission spectra of tunable dispersion filters of the type of small particles-liquid crystal. Opt Spectrosc 117(1):111–117. https://doi.org/10.1134/S0030400X14070066

  • Dick VP, Loiko VA, Ivanov AP (1997a) Angular structure of radiation scattered by monolayer of particles: experimental study. Appl Opt 36(3):4235–4240. https://doi.org/10.1364/AO.36.004235

  • Dick VP, Loiko VA, Ivanov AP (1997b) Light transmission by a monolayer of particles: comparison of experimental data with calculation as a single-scattering approximation. Appl Opt 36(24):6119–6122

    Google Scholar 

  • Dick VP, Ivanov AP (1999) Extinction of light in dispersive media with high particle concentrations: applicability limits of the interference approximation. J Opt Soc Am A 16(5):1034–1039

    Article  ADS  Google Scholar 

  • Ding KH, Tsang L (1988) Effective propagation constants of dense nontenuous media with multi-species of particles. Electromagn Waves Appl 2(8):757–777

    Google Scholar 

  • Domínguez S et al (2012) Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells. Photonics Nanostruct Fundam Appl 10:46–53

    Article  ADS  Google Scholar 

  • Dorado LA, Depine RA (2009) Modeling of disorder effects and optical extinction in three-dimensional photonic crystals. Phys Rev B 79:045124-1–7

    ADS  Google Scholar 

  • Drzaic PS (1988) Reorientation dynamics of polymer dispersed nematic liquid-crystal films. Liquid Cryst 3(11):1543–1559

    Article  Google Scholar 

  • Dubova GS, Khairullina AY (1982) Diffuse transmission and reflection by a thick weakly absorbing layer with close particle packing. J Appl Spectrosc. 37:1313–1316. https://doi.org/10.1007/BF00661033

  • Dufva TJ, Sarvas J, Sten JC-E (2008) Unified derivation of the translational addition theorems for the spherical scalar and vector wave functions. Prog Electromagn Res B 4:79–99

    Article  Google Scholar 

  • Dushkina N, Dushkin C, Nagayama K (2005) Diffraction from monolayer latex crystals. Annuaire de l’Universite “St K Ohridski” Fac Phys 98:23–37

    Google Scholar 

  • Economou EN, Zdetsis A (1989) Classical wave propagation in periodic structures. Phys Rev B 40(2):1334–1337

    Article  ADS  Google Scholar 

  • Evlyukhin AB et al (2010) Optical response features of Si-nanoparticle arrays. Phys Rev B 82:045404-1–12

    Article  ADS  Google Scholar 

  • Ewald PP (1916) Zur Begründung der Kristalloptik. Ann Physik 49(4):1–38

    Google Scholar 

  • Fedotov VG, Sel’kin AV (2011) Multiwave Bragg diffraction and interference effects in 3D photonic crystal films. Nanosyst Phys Chem Math 2:109–115 (in Russian)

    Google Scholar 

  • Felbacq D, Tayeb G, Maystre D (1994) Scattering by a random set of parallel cylinders. J Opt Soc Am A 11(9):2526–2538

    Article  ADS  MathSciNet  Google Scholar 

  • Fikioris JG, Waterman PC (1964) Multiple scattering of waves. II. "Hole Corrections" in the scalar case. J Math Phys 5:1413–1420

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fikioris JG, Waterman PC (2013) Multiple scattering of waves. III. The electromagnetic case. J Quant Spectrosc Radiat Transf 123:8–16

    Article  ADS  Google Scholar 

  • Fisher IZ (1964) Statistical theory of liquids. University of Chicago Press, Chicago, p 335

    Google Scholar 

  • Foldy LL (1945) The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys Rev 67(3):107–119

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Frieser H (1975) Photographic information recording. Focal, London

    Google Scholar 

  • Fujimura T et al (2000) Near-field optical images of ordered polystyrene particle layers and their photonic band effect. J Lumin 87–89:954–956

    Article  Google Scholar 

  • Fuller KA, Kattawar GW (1988a) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: linear chains. Opt Lett 13(2):90–92

    Google Scholar 

  • Fuller KA, Kattawar GW (1988b) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration. Opt Lett 13(12):1063–1065

    Google Scholar 

  • Gadomskiĭ ON, Shalin AS (2007) Effect of optical blooming of a nanocrystal monolayer and the interface between two media. J Exp Theor Phys 105:761–773. https://doi.org/10.1134/S106377610710010X

  • Galisteo-Lopez JF et al (2003) Optical study of the pseudogap in thickness and orientation controlled artificial opals. Phys Rev B 68:115109-1–8

    Article  ADS  Google Scholar 

  • Galisteo-Lopez JF, Ibisate M, Sapienza R, Froufe-Prez LS, Blanco A, Lopez C (2011) Self-assembled photonic structures. Adv Mater 23:30–69

    Article  ADS  Google Scholar 

  • Gantzounis G, Stefanou N (2006) Layer-multiple-scattering method for photonic crystals of nonspherical particles. Phys Rev B 73(3):035115-1–10

    Google Scholar 

  • García-Valenzuela A, Gutiérrez-Reyes E, Barrera R (2012) Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles. JOSA A 29:1161–1179

    Article  ADS  Google Scholar 

  • Germogenova OA (1964) Scattering of plane electromagnetic wave on two spheres. Izv AN SSSR Ser geophys 4:648–653

    Google Scholar 

  • Gremenok VF, Tivanov MS, Zalesski VB (2007) Solar cells based on semiconductor materials. BSU, Minsk, 222 p (in Russian)

    Google Scholar 

  • Guérin Ch-A, Mallet P, Sentenac A (2006) Effective-medium theory for finite-size aggregates. JOSA A 23:349–358

    Article  ADS  Google Scholar 

  • Gunde MK, Orel ZC (2000) Absorption and scattering of light by pigment particles in solar-absorbing paints. Appl Opt 39:622–628

    Article  ADS  Google Scholar 

  • Gurevich MM (1931) Questions of the rational classification of light-scattering substances. Trudy GOI (Trans Opt Inst Leningr) 6(57):1–18

    Google Scholar 

  • Gurevich MM (1953) Dependence of scattering on the wavelength of the type \(\lambda ^{-8}\). Zh Tekh Fiz 23:986–994 (in Russian)

    Google Scholar 

  • Hiltner PA, Krieger IM (1969) Diffraction of light by ordered suspensions. J Phys Chem 73(7):2386–2389

    Article  Google Scholar 

  • Ho KM, Chan CT, Soukoulis CM (1990) Existence of a photonic gap in periodic dielectric structures. Phys Rev Lett 65:3152–3155

    Article  ADS  Google Scholar 

  • Hong KM (1980) Multiple scattering of electromagnetic waves by a crowded monolayer of spheres: application to migration imaging films. J Opt Soc Am 70(7):821–826

    Article  ADS  MathSciNet  Google Scholar 

  • https://refractiveindex.info/

  • Hu G, Mantile A, Sini M (2014) Direct and inverse acoustic scattering by a collection of extended and point-like scatterers. Multiscale Model Simul 12(3):996–1027

    Article  MathSciNet  MATH  Google Scholar 

  • Huang K, Li P (2010b) A two-scale multiple scattering problem. Multiscale Model Simul 8(4):1511–1534

    Google Scholar 

  • Huang K, Solna K, Zhao H (2010a) Generalized Foldy-Lax formulation. J Comput Phys 229:4544–4553

    Google Scholar 

  • Huang H, Lin CH, Huang ZK, Lee KY, Yu CC, Kuo HC (2010b) Double photonic quasi-crystal structure effect on GaN-based vertical-injection light-emitting diodes. Jpn J Appl Phys 49:022101

    Google Scholar 

  • Huang K, Li P, Zhao H (2013) An efficient algorithm for the generalized Foldy-Lax formulation. J Comput Phys 234:376–398

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Huisman L et al (1981) Effective-medium theory of electronic states in structurally disordered metals: application to liquid Cu. Phys Rev B 24:1824–1834

    Article  ADS  Google Scholar 

  • Hunt GE (1971) The effect of coarse angular discretization on calculations of the radiation emerging from a model cloudy atmosphere. JQSRT 11:309–321. https://doi.org/10.1016/0022-4073(71)90016-1

  • Inoue M, Ohtaka K, Yanagawa S (1982) Light scattering from macroscopic spherical bodies. II. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres. Phys Rev B 25:689–699

    Article  ADS  Google Scholar 

  • Ishimaru A (1978a) Wave propagation and scattering in random media, vol 1. Academic Press, New York, Single scattering and transport theory, p 255

    Google Scholar 

  • Ishimaru A (1978b) Wave propagation and scattering in random media. In: Multiple scattering, turbulence, rough surfaces, and remote sensing, vol 2. Academic Press, New York, 340 p

    Google Scholar 

  • Ishimaru A, Kuga Y (1982) Attenuation constant of a coherent field in a dense distribution of particles. J Opt Soc Am 72:1317–1320

    Article  ADS  Google Scholar 

  • Ishimaru A, Tsang L (1988) Backscattering enhancement of random discrete scatters of moderate sizes. JOSA A 5:228–236

    Article  ADS  Google Scholar 

  • Ivanov AP, Loiko VA (1983) Optics of photographic layer, Minsk, 304 p

    Google Scholar 

  • Ivanov AP, Loiko VA, Dick VP (1988) Propagation of light in close-packed disperse media. Nauka i Tekhnika, Minsk, 191 p (in Russian)

    Google Scholar 

  • Ivanov AP, Makarevich SA, Khairullina AY (1987) Radiation propagation in tissues and liquids with close particle packing. J Appl Spectrosc 47:1077–1082. https://doi.org/10.1007/BF00667708

  • Ivanov P et al (2010) Lattice constant tuning and disorder effects in 3D colloidal photonic crystals. J Display Technol 6(1):14–21

    Article  ADS  Google Scholar 

  • Javanaud C, Thomas A (1988) Multiple scattering using the Foldy-Twersky integral equation. Ultrasonics 26:341–343

    Article  Google Scholar 

  • Ji L, Varadan VV (2011) Fishnet metastructure for efficiency enhancement of a thin film solar cell. J Appl Phys 110:043114-1–8

    ADS  Google Scholar 

  • Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. University Press, Princeton

    MATH  Google Scholar 

  • John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58(23):2486–2489

    Article  ADS  Google Scholar 

  • John S, Rangarajan R (1988) Optimal structures for classical wave localization: an alternative to the Ioffe-Regel criterion. Phys Rev B 38(14):10101–10104

    Article  ADS  Google Scholar 

  • Kachan SM, Ponyavina AN (2002) The spatial ordering effect on spectral properties of close-packed metallic nanoparticle monolayers. Surf Sci 507–510:603–608

    Article  Google Scholar 

  • Kachan SM, Ponyavina AN (2002a) Spectral properties of close-packed monolayers consisting of metal nanospheres. J Phys Condens Matter 14:103–111

    Google Scholar 

  • Kachan SM, Ponyavina AN (2002b) Spectral characteristics of confined photonic and plasmonic nanostructures. PSPIE 4705:88–94

    Google Scholar 

  • Kachan S, Stenzel O, Ponyavina A (2006) High-absorbing gradient multilayer coatings with silver nanoparticles. Appl Phys B 84:281–287

    Article  ADS  Google Scholar 

  • Kafesaki M, Economou E (1999) Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60:11993–12001

    Article  ADS  Google Scholar 

  • Kafesaki M, Penciu RS, Economou EN (2000) Air bubbles in water: a strongly multiple scattering medium for acoustic waves. Phys Rev Lett 84(26):6050–6053

    Article  ADS  Google Scholar 

  • Kaliteevski MA et al (2003) Disorder-induced modification of the attenuation of light in a two-dimensional photonic crystal with complete band gap. Phys Status Solidi(a) 195(3):612–617

    Google Scholar 

  • Kalmykov AE, Shepilov MP, Sycheva GA (2000) Electron microscopic investigation of spatial ordering of particles formed in the course of liquid phase separation in sodium borosilicate glass. Glass Phys Chem 26:307–309. https://doi.org/10.1007/BF02738304

  • Kambe K (1967) Theory of low-energy electron diffraction. I. Application of the cellular method to monoatomic layers. Z Naturforschg 22a:322–330

    Google Scholar 

  • Kambe K (1968) Theory of low-energy electron diffraction. II. Cellular method for complex monolayers and multilayers. Z Naturforschg 23a:1280–1294

    Google Scholar 

  • Katsidis CC, Siapkas DI (2002) General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt 41(19):3978–3987

    Article  ADS  Google Scholar 

  • Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial pn junction nanorod solar cells. J Appl Phys 97:114302–114312

    Article  ADS  Google Scholar 

  • Kelly JR, Wu W (1993) Multiple scattering effects in polymer dispersed liquid crystals. Liq Cryst 14(6):1683–1694

    Article  Google Scholar 

  • Kinnan MK et al (2009) Plasmon coupling in two-dimensional arrays of silver nanoparticles: I. Effect of the dielectric medium. J Phys Chem C 113:7079–7084

    Article  Google Scholar 

  • Kocher-Oberlehner G et al (2012) Planar photonic solar concentrators for building-integrated photovoltaics. Sol Energy Mater Sol Cells 104:53–57

    Article  Google Scholar 

  • Koenderink AF et al (2000) Enhanced backscattering from photonic crystals. Phys Lett A 268:104–111

    Article  ADS  Google Scholar 

  • Koenderink AF, Lagendijk A, Vos WL (2005) Optical extinction due to intrinsic structural variations of photonic crystals. Phys Rev B 72:153102-1–4

    Article  ADS  Google Scholar 

  • Kohn W, Rostoker N (1954) Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94(5):1111–1120

    Article  ADS  MATH  Google Scholar 

  • Kokhanovsky AA (2001) Optics of light scattering media: problems and solutions, 2nd edn. Springer-Praxis, Chichester, p 262

    Google Scholar 

  • Kokhanovsky AA, Korolevich AN (1998) The dependence of the diffuse reflection coefficient of blood on the concentration of red cells. J Colloid Interface Sci 208:575–577

    Article  ADS  Google Scholar 

  • Kolyadin AI (1956) Anomalous scattering in glass. Dokl Akad Nauk SSSR 109:64–67 (in Russian)

    Google Scholar 

  • Kondo T et al (2002) Transmission characteristics of a two-dimensional photonic crystal array of dielectric spheres using subterahertz time domain spectroscopy. Phys Rev B 66:033111-1–4

    Article  ADS  Google Scholar 

  • Kondo T et al (2004) Refractive index dependence of the transmission properties for a photonic crystal array of dielectric spheres. Phys Rev B 70:235113-1–6

    ADS  Google Scholar 

  • Konkolovich AV, Presnyakov VV, Zyryanov VYa, Loiko VA, Shabanov VF, (2000) Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal. J Exp Theor Phys Lett 71(12):486–488

    Google Scholar 

  • Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica (Utrecht) 13(6–7):392–400

    Article  ADS  MathSciNet  Google Scholar 

  • Kosobukin VA (2005) On the theory of diffraction of light in photonic crystals with allowance for interlayer disordering. Phys Solid State 47:2035–2045. https://doi.org/10.1134/1.2131141

  • Krieger IM, O’Neill FM (1968) Diffraction of light by arrays of colloidal spheres. J Am Chem Soc 90(12):3114–3120

    Article  Google Scholar 

  • Kuga Y, Ishimaru A (1984) Retroreflectance from a dense distribution of spherical particles. J Opt Soc Am A 1(8):831–835

    Article  ADS  Google Scholar 

  • Kurokawa Y, Miyazaki H, Jimba Y (2002) Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates. Phys Rev B 65:201102-1–4

    Article  ADS  Google Scholar 

  • Kurokawa Y, Miyazaki H, Jimba Y (2004a) Optical band structure and near-field intensity of a periodically arrayed monolayer of dielectric spheres on dielectric substrate of finite thickness. Phys Rev B 69:155117-1–9

    Google Scholar 

  • Kurokawa Y, Jimba Y, Miyazaki H (2004b) Internal electric-field intensity distribution of a monolayer of periodically arrayed dielectric spheres. Phys Rev B 70:155107-1–5

    Google Scholar 

  • Kuz’min VL, Romanov VP, Obraztsov EP (2001) Fluctuations of dielectric constant in a system of hard spheres. Opt Spectrosc 91:913–920. https://doi.org/10.1134/1.1429707

  • Lado F (1968) Equation of state of the hard-disk fluid from approximate integral equations. J Chem Phys 49(7):3092–3096

    Article  ADS  Google Scholar 

  • Lagendijk A, van Tiggelen BA (1996) Resonant multiple scattering of light. Phys Rep 270:143–215

    Article  ADS  Google Scholar 

  • Lamb W, Wood DM, Ashcroft NW (1980) Long-wavelength electromagnetic propagation in heterogeneous media. Phys Rev B 21(6):2248–2266

    Article  ADS  Google Scholar 

  • Lavrinenko AV, Wohlleben W, Leyrer RJ (2009) Influence of imperfections on the photonic insulating and guiding properties of finite Si-inverted opal crystals. Opt Exp 17(2):747–760

    Article  ADS  Google Scholar 

  • Lax M (1951) Multiple scattering of waves. Rev Mod Phys 23(4):287–310

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lax M (1952) Multiple scattering of waves. II. The effective field in dense systems. Phys Rev 85(4):621–629

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lenoble J (ed) (1985) Radiative transfer in scattering and absorbing atmospheres: standard computational procedures. Deepak Publishing, Hampton

    Google Scholar 

  • Leung KM, Liu YF (1990a) Photon band structures: the plane-wave method. Phys Rev B 41(14):10188–10190

    Google Scholar 

  • Leung KM, Liu YF (1990b) Full vector wave calculation of photonic band structures in face-centered cubic dielectric media. Phys Rev Lett 65(21):2646–2649

    Google Scholar 

  • Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered structures. Phys Rev Let 53:2477

    Article  ADS  Google Scholar 

  • Li CQ et al (2013) Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation. J Phys Chem C 117:24625–24631

    Article  Google Scholar 

  • Li Z-Y, Zhang Z-Q (2000) Fragility of photonic band gaps in inverse-opal photonic crystals. Phys Rev B 62(3):1516–1519

    Article  ADS  Google Scholar 

  • Liang C, Lo YT (1967) Scattering by two spheres. Radio Sci 2:1481–1495

    Article  ADS  Google Scholar 

  • Liao J, Ji C (2014) Extended Foldy-Lax approximation on multiple scattering. Math Model Anal 19(1):85–98

    Article  MathSciNet  Google Scholar 

  • Linton CM, Martin PA (2005) Multiple scattering by random configurations of circular cylinders: second-order corrections for the effective wavenumber. J Acoust Soc Am 117(6):3413–3423

    Article  ADS  Google Scholar 

  • Lloyd P, Berry MV (1967) Wave propagation through an assembly of spheres: IV. Relations between different multiple scattering theories. Proc Phys Soc 91:678–688

    Article  ADS  Google Scholar 

  • Lock JA, Chiu C-L (1994) Correlated light scattering by a dense distribution of condensation droplets on a window pane. Appl Opt 33(21):4663–4671

    Article  ADS  Google Scholar 

  • Loewinger E, Gordon A, Weinreb A, Gross J (1964) Analysis of a micromethod for transmission oximetry of whole blood. J Appl Physiol 19:1179–84

    Article  Google Scholar 

  • Loiko VA (1981) Reflection by disperse layer with different packing density. In: Proceedings of the academy of sciences of BSSR. Series of physics and mathematics, No. 4, pp 241–245 (in Russian)

    Google Scholar 

  • Loiko VA (2013) Polymer films with nanosized liquid-crystal droplets: extinction, polarization, phase, and light focusing. In: Wang ZM (ed) Nanodroplets. Springer, New York, pp 195–235 Chap. 9

    Google Scholar 

  • Loiko VA, Berdnik VV (2003) Light scattering in a disperse layer with partially ordered soft particles. In: Van Tiggelen B, Skipetrov S (eds) Proceedings of NATO ASI wave scattering in complex media: from theory to applications. Series II. Kluwer Academic Publishers, Dordrecht, pp 535–551

    Google Scholar 

  • Loiko VA, Berdnik VV (2006) Light scattering in a layer of correlatively arranged optically soft particles. Opt Spectrosc 101(2):303–308. https://doi.org/10.1134/S0030400X06080200

  • Loiko VA, Dick VP (2003) Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: effect of correlation and polydispersity of droplets. Opt Spectrosc 94:595–599. https://doi.org/10.1134/1.1570487

  • Loiko VA, Dick, VP, Ivanov AP (1984) A method to determine average particle size. SU patent No1118176, 8 June 1984

    Google Scholar 

  • Loiko VA, Dubovik OV (1986) Program of international congress of photographic science. In: Statistics of particle distribution in a highly-concentrated photosensitive layer, 10-17 September. Cologne/Köln, p 306

    Google Scholar 

  • Loiko VA, Ivanov AP, Dik VP (1985) Application of the radial distribution function to the analysis of light scattering in a dispersed medium. J Appl Spectrosc 42(5):571–576. https://doi.org/10.1007/BF00661410

  • Loiko VA, Maschke U, Zyryanov VYa, Konkolovich AV, Miskevich AA, (2011) Coherent transmission and angular structure of light scattering by monolayer films of polymer dispersed liquid crystals with inhomogeneous boundary conditions. Opt Spectrosc 111(6):866–872. https://doi.org/10.1134/S0030400X11130121

  • Loiko VA, Miskevich AA (2005a) Propagation of light through a monolayer of particles: analysis of phase and coherent transmittance. Opt Spectrosc 98:61–67. https://doi.org/10.1134/1.1858041

  • Loiko VA (1991) Fluctuations in number of irregularities and noise properties of the dispersion medium. Opt J 11:40–45 (in Russian)

    Google Scholar 

  • Loiko VA, Dubovik OV (1989a) Fluctuations in transmission coefficient of a single layer of discrete scatterers. Opt Spectrosc 67(2):233–235

    Google Scholar 

  • Loiko VA, Dubovik OV (1989b) Noise properties of the medium to reproduce the optical image due to fluctuations in the number of irregularities. Optoelectron Instrum Data Process 6:11–15 (in Russian)

    Google Scholar 

  • Loiko VA, Dubovik OV (1990) Features of formation of optical noise in the particulate monolayer. Optoelectron Instrum Data Process 1:51–53 (in Russian)

    Google Scholar 

  • Loiko VA, Konkolovich AV (1994) Concentrated recording media: theory of optical noise for monolayers. Opt Spectrosc 77(6):899–905

    ADS  Google Scholar 

  • Loiko VA, Konkolovich AV (1995) The RMS granularity and Wiener spectrum of concentrated photolayers. Sci Appl Photo 37(2):22–231

    Google Scholar 

  • Loiko VA, Konkolovich AV (1997) Transmittance and spatial optical noise of polymer dispersed liquid crystal layers. Mol Cryst Liq Cryst 303:41–46

    Article  Google Scholar 

  • Loiko VA, Konkolovich AV (1998a) Spatial optical noise of a monolayer of discrete inhomogeneities: I. Basic relations for the Wiener spectrum. Opt Spectrosc 85(4):563–567

    Google Scholar 

  • Loiko VA, Konkolovich AV (1998b) Spatial optical noise of a monolayer of discrete inhomogeneities: II. The wiener spectrum in the model of random substitution mixture. Opt Spectrosc 85(4):568–573

    Google Scholar 

  • Loiko VA, Konkolovich AV (2000) Interference effect of coherent transmittance quenching: theoretical study of optical modulation by surface ferroelectric liquid crystal droplets. J Phys D Appl Phys 33:2201–2210

    Article  ADS  Google Scholar 

  • Loiko VA, Konkolovich AV (2001a) Propagation of polarized light via polymer-dispersed liquid crystal film. J Opt B Quantum Semiclass Opt 3:155–158

    Google Scholar 

  • Loiko VA, Konkolovich AV (2001b) Coherent transmittance quenching effect in thin films of polymer-dispersed ferroelectric liquid crystals. Opt Spectrosc 90(5):760–764

    Google Scholar 

  • Loiko VA, Miskevich A (2004) The adding method for coherent transmittance and reflectance of a densely packed layer. J Quant Spectrosc Radiat Transf 88:125–138

    Article  ADS  Google Scholar 

  • Loiko VA, Miskevich AA (2005b) Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients. Appl Opt 44(18):3759–3768

    Google Scholar 

  • Loiko VA, Miskevich AA (2013) Coherent transmission and reflection spectra of ordered structures from spherical alumina particles. Opt Spectrosc 115(2):274–282

    Article  ADS  Google Scholar 

  • Loiko VA, Molochko VI (1995) Coherent transmission and reflection of a monolayer of discrete scatterers at oblique incidence of the light wave. Opt Spectrosc 79:304–310

    ADS  Google Scholar 

  • Loiko VA, Molochko VI (1996) Coherent transmission and reflection by a monolayer of discrete scatterers. Part Part Syst Char 13:227–233

    Article  Google Scholar 

  • Loiko VA, Molochko VI (1998) The model of adding for coherent component in a concentrated layer of discrete scatterers. Opt Spectrosc 84:755–760

    ADS  Google Scholar 

  • Loiko VA, Ruban GI (2000) Light absorption and scattering by a photolayer with closely packed particles. Opt Spectrosc 88:756–761

    Article  ADS  Google Scholar 

  • Loiko VA, Ruban GI (2004) Absorption by a layer of densely packed subwavelength-sized particles. J Quant Spectrosc Radiat Transf 89:271–278

    Article  ADS  Google Scholar 

  • Loiko VA, Zyryanov VYa, Maschke U, Konkolovich AV, Miskevich AA, (2012) Small-angle light scattering and transmittance of polymer film, containing liquid crystal droplets with inhomogeneous boundary conditions. J Quant Spectrosc Radiat Transf 113:2585–2592

    Google Scholar 

  • Loiko VA, Ivanov AP, Dick VP (1986) Estimate of correlation radius in a disperse medium with close packing of particles. Opt Spectrosc 60(5):649–651

    ADS  Google Scholar 

  • Loiko VA, Dick VP, Molochko VI (1998) Monolayers of discrete scatterers: comparison of the single-scattering and quasi-crystalline approximations. JOSA A 15(9):2351–2354

    Article  ADS  Google Scholar 

  • Loiko VA, Dick VP, Ivanov AP (1999) Passage of light through a dispersion medium with a high concentration of discrete inhomogeneities: experiment. Appl Opt 38(12):2640–2646

    Article  ADS  Google Scholar 

  • Loiko VA, Dick VP, Ivanov AP (2000) Features in coherent transmittance of a monolayer of particles. J Opt Soc Am A 17(11):2040–2045

    Article  ADS  Google Scholar 

  • Loiko VA, Konkolovich AV, Miskevich AA (2005a) Polymer dispersed liquid crystal films: adding model for coherent field. Proc SPIE 6023:41–48

    Google Scholar 

  • Loiko VA, Miskevich AA, Konkolovich AV (2005b) Propagation of light in polymer dispersed liquid crystal films: the adding model for coherent field. Mol Cryst Liq Cryst 433:65–72

    Google Scholar 

  • Loiko VA, Zyryanov VYa, Konkolovich AV, Miskevich AA, (2016a) Light transmission of polymer-dispersed liquid crystal layer composed of droplets with inhomogeneous surface anchoring. Opt Spectrosc 120(1):143–152

    Google Scholar 

  • Loiko VA, Krakhalev MN, Konkolovich AV, Prishchepa OO, Miskevich AA, Zyryanov VYa (2016b) Experimental results and theoretical model to describe angular dependence of light scattering by monolayer of nematic droplets. J Quant Spectrosc Radiat Transf 178:263–268

    Google Scholar 

  • Lommel E (1887) Die Photometrie der diffusen Zurückwerfung. Sitzber Acad Wissensch. München 17:95–124

    MATH  Google Scholar 

  • Luque A, Hegedus S (eds) (2011) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, Chichester, p 1132

    Google Scholar 

  • Ma Y, Varadan VV, Varadan VK (1988) Scattered intensity of a wave propagating in a discrete random medium. Appl Opt 27:2469–2477

    Article  ADS  Google Scholar 

  • Ma Y, Varadan VK, Varadan VV (1990) Enhanced absorption due to dependent scattering. J Heat Transf 112:402–407

    Article  Google Scholar 

  • Mackowski D (1991) Analysis of radiative scattering for multiple sphere configurations. Proc R Soc Lond A 433:599–614

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mackowski D (1994) Calculation of total cross sections of multiple-sphere clusters. J Opt Soc Am A 11:2851–2861

    Article  ADS  Google Scholar 

  • Markel VA (2016) Introduction to the Maxwell-Garnett approximation. JOSA A 33(7):1244–1256. https://doi.org/10.1364/JOSAA.33.001244

  • Mathur NC, Yeh KC (1964) Multiple scattering of electromagnetic waves by random scatterers of finite size. J Math Phys 5(11):1619–1628

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maurel A, Martin PA, Pagneux V (2010) Effective propagation in a one-dimensional perturbed periodic structure: comparison of several approaches. Waves Random Complex Media 20(4):634–655

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans R Soc Lond A 203:385–420

    Article  ADS  MATH  Google Scholar 

  • Mazurenko DA et al (2003) Ultrafast optical switching in three-dimensional photonic crystals. Phys Rev Lett 91(21):213903-1- 4

    Google Scholar 

  • Meade RD et al (1993) Accurate theoretical analysis of photonic band-gap materials. Phys Rev B 48(11):8434–8437

    Article  ADS  Google Scholar 

  • Meisels R, Kuchar F (2007) Density-of-states and wave propagation in two-dimensional photonic crystals with positional disorder. J Opt A Pure Appl Opt 9:S396–S402

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  MATH  Google Scholar 

  • Minin IYa, (1988) Theory of radiation transfer in the atmosphere of planets. Nauka, Moscow (in Russian)

    Google Scholar 

  • Mishchenko MI (2008a) Multiple scattering by particles embedded in an absorbing medium. 1. Foldy-Lax equations, order-of-scattering expansion, and coherent field. Opt Exp 16(3):2288–2301

    Google Scholar 

  • Mishchenko MI (2008b) Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation. J Quant Spectrosc Radiat Transf 109:2386–2390

    Google Scholar 

  • Mishchenko MI, Zakharova NT, Khlebtsov NG, Videen G, Wriedt T (2016) Comprehensive thematic T-matrix reference database: a 2014–2015 update. J Quant Spectrosc Radiat Transf 178:276–283. https://doi.org/10.1016/j.jqsrt.2015.11.005

  • Mishchenko MI (1994) Asymmetry parameters of the phase function for densely packed scattering grains. J Quant Spectrosc Radiat Transf 52:95–110

    Article  ADS  Google Scholar 

  • Mishchenko MI et al (2007) Multiple scattering by random particulate media: exact 3D results. Opt Exp 15(6):2822–2836

    Article  ADS  Google Scholar 

  • Mishchenko MI, Videen G, Babenko VA, Khlebtsov NG, Wriedt T (2004) T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J Quant Spectrosc Radiat Transf 88:357–406

    Article  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2006) Multiple scattering of light by particles. Press, Cambridge, Univ, p 478

    Google Scholar 

  • Miskevich AA, Loiko VA (2011a) Two-dimensional planar photonic crystals: calculation of coherent transmittance and reflectance at normal illumination under the quasicrystalline approximation. J Quant Spectrosc Radiat Transf 112.:1082–1089

    Google Scholar 

  • Miskevich AA, Loiko VA (2011b) Coherent transmission and reflection of a two-dimensional planar photonic crystal. JETP 113(1):1–13

    Google Scholar 

  • Miskevich AA, Loiko VA (2013a) Periodic structures with spherical alumina particles: transmission and reflection spectra. Semicond Phys Quantum Electron Optoelectron 16(2):177–184

    Google Scholar 

  • Miskevich AA, Loiko VA (2013b) Spectra of coherent transmittance and reflectance of periodic, Fibonacci, and Thue-Morse multilayers of dielectric particles. Nanosyst Phys Chem Math 4:778–794

    Google Scholar 

  • Miskevich AA, Loiko VA (2014a) Light absorption by a layered structure of silicon particles as applied to the solar cells: theoretical study. J Quant Spectrosc Radiat Transf 146:355–64. https://doi.org/10.1016/j.jqsrt.2013.12.008i

  • Miskevich AA, Loiko VA (2014b) Layered periodic disperse structures of spherical alumina particles: coherent transmittance and reflectance spectra. J Quant Spectrosc Radiat Transf 136:58–70

    Google Scholar 

  • Miskevich AA, Loiko VA (2014c) Method for retrieving the refractive index of ordered particles from data on the photonic band gap. JETP 119(2):211–226

    Google Scholar 

  • Miskevich AA, Loiko VA (2015a) Solar cells based on particulate structure of active layer: investigation of light absorption by an ordered system of spherical submicron silicon particles. J Quant Spectrosc Radiat Transf 167:23–39. https://doi.org/10.1016/j.jqsrt.2015.08.003

  • Miskevich AA, Loiko VA (2015b) Three-dimensional ordered particulate structures: method to retrieve characteristics from photonic band gap data. J Quant Spectrosc Radiat Transf 151:260–268

    Google Scholar 

  • Mittleman DM et al (1999) Optical properties of planar colloidal crystals: Dynamical diffraction and the scalar wave approximation. Chem Phys 111(1):345–354

    ADS  Google Scholar 

  • Miyazaki HT et al (2000) Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope. J Appl Phys 87(10):7152–7158

    Article  ADS  Google Scholar 

  • Miyazaki H, Ohtaka K (1998) Near-field images of a monolayer of periodically arrayed dielectric spheres. Phys Rev B 58:6920–6937

    Article  ADS  Google Scholar 

  • Modinos A (1987) Scattering of electromagnetic waves by a plane of spheres-formalism. Modinos Physica A 141:575–588

    Article  ADS  Google Scholar 

  • Modinos A et al (2001) On wave propagation in inhomogeneous systems. Physica B 296:167–173

    Article  ADS  Google Scholar 

  • Modinos A, Yannopapas V, Stefanou N (2000) Scattering of electromagnetic waves by nearly periodic structures. Phys Rev B 61:8099–8107

    Article  ADS  MATH  Google Scholar 

  • Modinos A, Stefanou N, Yannopapas V (2001) Applications of the layer-KKR method to photonic crystals. Opt Exp 8(3):197–202

    Article  ADS  Google Scholar 

  • Morales P, Andueza A, Sevilla J (2013) Effect of dielectric permittivity variation in the transmission spectra of noncompact 2D-arrays of dielectric spheres. J Appl Phys 113:084906-1–4

    Article  ADS  Google Scholar 

  • Moroz A (1994) Inward and outward integral equations and the KKR method for photons. J Phys Condens Matter 6:171–182

    Article  ADS  Google Scholar 

  • Moroz A (1995) Density-of-states calculations and multiple-scattering theory for photons. Phys Rev B 51(4):2068–2081

    Article  ADS  Google Scholar 

  • Mouldi A, Kanzari M (2012) Design of microwave devices exploiting Fibonacci and hybrid periodic/Fibonacci one dimensional photonic crystals. Prog Electromagn Res B 40:221–240

    Article  Google Scholar 

  • Muskens O, Koenderink AF, Vos WL (2011) Broadband coherent backscattering spectroscopy of the interplay between order and disorder in three-dimensional opal photonic crystals. Phys Rev B 83(155101):1–9

    Google Scholar 

  • Nair RV, Jagatap BN (2012) Engineering disorder in three-dimensional photonic crystals. Photonics Nanostruct Fundam Appl 10:581–588

    Article  ADS  Google Scholar 

  • Nelson J (1989) Test of a mean field theory for the optics of fractal clusters. J Mod Opt 36:1031–1057

    Article  ADS  Google Scholar 

  • Nicorovici NA, McPhedran RC, Da Ke B (1995) Propagation of electromagnetic waves in periodic lattices of spheres: Green’s function and lattice sums. Phys Rev E 51(1):690–702

    Article  ADS  Google Scholar 

  • Ohtaka K (1979) Energy band of photons and low-energy photon diffraction. Phys Rev B 19(10):5057–5067

    Article  ADS  Google Scholar 

  • Ohtaka K (1980) Scattering theory of low-energy photon diffraction. J Phys C Solid State Phys 13:667–680

    Article  ADS  Google Scholar 

  • Ohtaka K et al (2000) Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region. Phys Rev B 61:5267–5279

    Article  ADS  Google Scholar 

  • Ohtaka K, Yamaguti S (2004) Optical excitation of optically inactive photonic band modes. Photonics Nanostruct Fundam Appl 2:73–79

    Google Scholar 

  • Ohtaka K, Ueta T, Amemiya K (1998) Calculation of photonic bands using vector cylindrical waves and reflectivity of light for an array of dielectric rods. Phys Rev B 57(4):2550–2568

    Article  ADS  Google Scholar 

  • Ohtaka K, Inoue J, Yamaguti S (2004) Derivation of the density of states of leaky photonic bands. Phys Rev B 70:035109-1–13

    Google Scholar 

  • Okada Y, Kokhanovsky AA (2009) Light scattering and absorption by densely packed groups of spherical particles. J Quant Spectrosc Radiat Transf 110:902–917

    Article  ADS  Google Scholar 

  • Ondris-Crawford R, Boyko EP, Wagner BG, Erdmann JH, Zumer S, Doane JW (1991) Microscope textures of nematic droplets in polymer dispersed liquid crystal. J Appl Phys 69:6380–6

    Article  ADS  Google Scholar 

  • Ornstein LS, Zernike F (1914) Accidental deviations of density and opalescence at the critical point of a single substance. Proc Acad Sci 17:793–806

    Google Scholar 

  • Palik ED (ed) (1985) Handbook of optical constants of solids, vol 3. Academic, San Diego, 1985–1998, vol 1, 804 p

    Google Scholar 

  • Palik ED (ed) (1991) Handbook of optical constants of solids, vol II. Academic, San Diego, p 770

    Google Scholar 

  • Parnell WJ, Abrahams ID (2010) Multiple point scattering to determine the effective wavenumber and effective material properties of an inhomogeneous slab. Waves Random Complex Media 20(4):678–701

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Parnell WJ, Martin PA (2011) Multiple scattering of flexural waves by random configurations of inclusions in thin plates. Wave Motion 48:161–175

    Article  MathSciNet  MATH  Google Scholar 

  • Parnell W, Abrahams I, Brazier-Smith P (2010) Effective properties of a composite half-space: exploring the relationship between homogenization and multiple-scattering theories. Q J Mech Appl Math 63:145–175

    Article  MathSciNet  MATH  Google Scholar 

  • Pendry JB (1974) Low energy electron diffraction. Academic Press, New York, p 407

    Google Scholar 

  • Pendry JB (1996) Calculating photonic band structure. J Phys Condens Matter 8:1085–1108

    Article  ADS  Google Scholar 

  • Pendry JB, MacKinnon A (1992) Calculation of photon dispersion relations. Phys Rev Lett 69(19):2772–2775

    Article  ADS  Google Scholar 

  • Percus JK, Yevick GJ (1958) Analysis of classical statistical mechanics by means of collective coordinates. Phys Rev 110:1–13

    Google Scholar 

  • Peterson B, Ström S (1973) T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys Rev D 8(10):3661–3678

    Article  ADS  MathSciNet  Google Scholar 

  • Peterson B, Ström S (1974) T-matrix formulation of electromagnetic scattering from multilayered scatterers. Phys Rev D 10:2670–2684

    Article  ADS  Google Scholar 

  • Plass GN, Kattawar GW, Catchings FF (1973) Matrix operator theory of radiative transfer. 1: Rayleigh scattering. Appl Opt 12:314–329

    Article  ADS  Google Scholar 

  • Ponyavina AN (1998) Selection of optical radiation in scattering in partially ordered disperse media. J Appl Spectrosc 65:752–765

    Article  ADS  Google Scholar 

  • Ponyavina AN, Silvanovich NI (1994) Interference effects and spectral characteristics of multilayer scattering media. Opt Spektrosk 76:581–588

    ADS  Google Scholar 

  • Ponyavina AN, Sil’vanovlch NI (1990) Coherent reflection and transmission of close-packed scatterer monolayers. J Appl Spectrosc 53(2):884–889

    Article  Google Scholar 

  • Ponyavina A, Kachan S, Sil’vanovich N (2004) Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals. JOSA B 21(10):1866–1875

    Article  ADS  Google Scholar 

  • Pouya C, Stavenga DG, Vukusic P (2011) Discovery of ordered and quasiordered photonic crystal structures in the scales of the beetle Eupholus magnificus. Opt Exp 19:11355–11364

    Article  ADS  Google Scholar 

  • Prasad T, Colvin VL, Mittleman DM (2007) The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy. Opt Exp 15(25):16954–16965

    Article  ADS  Google Scholar 

  • Psarobas I, Stefanou N, Modinos A (2000) Scattering of elastic waves by periodic arrays of spherical bodies. Phys Rev B 62:278–291

    Article  ADS  Google Scholar 

  • Reference solar spectral irradiance: air mass 1.5 [Electronic resource]/American society for testing and materials (ASTM) terrestrial reference spectra for photovoltaic performance evaluation - mode of access https://rredc.nrel.gov/solar/spectra/am1.5

  • Rengarajan R et al (2005) Effect of disorder on the optical properties of colloidal crystals. Phys Rev E 71:016615-1–11

    Article  ADS  Google Scholar 

  • Rockstuhl C et al (2007) Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays. Appl Phys Lett 91:151109-1–3

    ADS  Google Scholar 

  • Rojas-Ochoa LF, Mendez-Alcaraz JM, Schurtenberger P, Saenz JJ, Scheffold F (2004) Photonic properties of strongly correlated colloidal liquids. Phys Rev Lett 93:073903-1–4

    Article  ADS  Google Scholar 

  • Rosasco GJ, Bennett HS (1978) Internal field resonance structure: Implications for optical absorption and scattering by microscopic particles. J Opt Soc Am 68:1242–1250

    Article  ADS  Google Scholar 

  • Roth LM (1974) Effective-medium approximation for liquid metals. Phys Rev B 9(6):2476–2484

    Article  ADS  Google Scholar 

  • Rudhardt D et al (2003) Phase switching of ordered arrays of liquid crystal emulsions. Appl Phys Lett 82(16):2610–2612

    Article  ADS  Google Scholar 

  • Rundquist PA et al (1989) Dynamical Bragg diffraction from crystalline colloidal arrays. J Chem Phys 91(8):4932–4941

    Article  ADS  Google Scholar 

  • Rybin MV, Samusev KB, Limonov MF (2008) On dip broadening in transmission spectra of synthetic opals. Phys Solid State 50:436–445. https://doi.org/10.1134/S1063783408030074

  • Rybin MV et al (2009) Fano resonance between mie and bragg scattering in photonic crystals. Phys Rev Lett 103:023901-1–4

    Article  ADS  Google Scholar 

  • Ryu H-Y, Hwang J-K, Lee Y-H (1999) Effect of size nonuniformities on the band gap of two-dimensional photonic crystals. Phys Rev B 59(8):5463–5469

    Article  ADS  Google Scholar 

  • Sainidou R et al (2005) A layer-multiple-scattering method for phononic crystals and heterostructures of such. Comput Phys Commun 166:197–240

    Article  ADS  Google Scholar 

  • Saritas M, McKell H (1988) Diffusion length studies in silicon by the surface photovoltage method. Solid-State Electron 31:835–842

    Article  ADS  Google Scholar 

  • Sarofim AF, Hottel HC, Fahimion EJ (1968) Scattering of radiation by particle layer. AIAA J 6:2262–2266

    Article  ADS  Google Scholar 

  • Satpathy S, Zhang Z, Salehpour MR (1990) Theory of photon bands in three-dimensional periodic dielectric structures. Phys Rev Lett 64(11):1239–1242

    Article  ADS  Google Scholar 

  • Schilling J et al (2001) A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. J Opt A Pure Appl Opt 3:S121–S132

    Article  Google Scholar 

  • Schuster A (1905) Radiation through a foggy atmosphere. Astrophys J 21:1–22

    Article  ADS  Google Scholar 

  • Schuster CS et al (2015) Plasmonic and diffractive nanostructures for light trapping - an experimental comparison. Optica 2:194–200

    Article  Google Scholar 

  • Schwartz L, Plona TJ (1984) Ultrasonic propagation in closepacked disordered suspensions. J Appl Phys 55(11):3971–3977

    Article  ADS  Google Scholar 

  • Shalin AS (2009) Effect of the absolute transparency of an ordered nanocomposite. JETP Lett 90:257–262. https://doi.org/10.1134/S0021364009160073

  • Shalin AS (2010) Broadband blooming of a medium modified by an incorporated layer of nanocavities. JETP Lett 91:636–642. https://doi.org/10.1134/S0021364010120052

  • Shalin A, Moiseev S (2009) Optical properties of nanostructured layers on the surface of an underlying medium. Opt Spectrosc 106:916–925

    Google Scholar 

  • Sharma AK et al (2012) Determination of minority carrier diffusion length from distance dependence of lateral photocurrent for side-on illumination. Sol Energy Mater Sol Cells 100:48–52

    Article  Google Scholar 

  • Shatilov AV (1962) Anomalous scattering as a case of scattering by a system of particles. Opt Spectrosc 13:412

    ADS  Google Scholar 

  • Sheng X et al (2011) Optimization-based design of surface textures for thin-film Si solar cells. Opt Exp 19:A841–A850

    Article  Google Scholar 

  • Shepilov MP (2003) The problem of theoretically describing anomalous light scattering by liquating glasses, caused by interparticle interference. J Opt Technol 70(12):882–887. https://doi.org/10.1364/JOT.70.000882

  • Shi L et al (2013) Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat Commun 4:1904

    Article  Google Scholar 

  • Shi L, Tuzer TU, Fenollosa R, Meseguer F (2012) A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities. Adv Mater 24:5934–5938

    Article  Google Scholar 

  • Sigalas M et al (1996) Localization of electromagnetic waves in two-dimensional disordered systems. Phys Rev B 53:8340–8348

    Article  ADS  Google Scholar 

  • Simoni F (1997) Nonlinear properties of liquid crystals and polymer dispersed liquid crystals. Singapore, World scientific, p 278

    Book  Google Scholar 

  • Siqueira PR, Sarabandi K (1996) Method of moments evaluation of the two-dimensional quasi-crystalline approximation. IEEE Trans Antennas Propag 44(8):1067–1077

    Article  ADS  Google Scholar 

  • Skorobogatiy M, Begin G, Talneau A (2005) Statistical analysis of geometrical imperfections from the images of 2D photonic crystals. Opt Exp 13(7):2487–2502

    Article  ADS  Google Scholar 

  • Skryshevskii AF (1980) Structural analysis of liquids and amorphous solids. Vysshaya Shkola, Moscow, 328 p (in Russian)

    Google Scholar 

  • Sobolev VV (1956a) A treatise on radiative transfer. Gostekhizdat, Moscow. Van Nostrand, Princeton (1963)

    Google Scholar 

  • Sobolev VV (1956b) Radiant energy transport in athmospheres of stars and planets. State publishing house of tech.-theor. literature, Moscow, 392 p (in Russian)

    Google Scholar 

  • Soven P (1966) Approximate calculation of electronic structure of disordered alloys-application to alpha brass. Phys Rev 151:539–550

    Article  ADS  Google Scholar 

  • Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156(3):809–813

    Article  ADS  Google Scholar 

  • Sozuer HS, Haust JW, Inguva R (1992) Photonic bands: convergence problems mith the plane-wave method. Phys Rev B 45(24):13962–13972

    Article  ADS  Google Scholar 

  • Spry RJ, Kosan (DJ) Theoretical analysis of the crystalline colloidal array filter. Appl Spectrosc 40(6):782–784

    Google Scholar 

  • Staude I et al (2013) Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7:7824–7832

    Article  Google Scholar 

  • Stefanou N, Modinos A (1991a) Scattering of light from a two-dimensional array of spherical particles on a substrate. J Phys Condens Matter 3:8135–8148

    Google Scholar 

  • Stefanou N, Modinos A (1991b) Optical properties of thin discontinuous metal films. J Phys Condens Matter 3:8149–8157

    Google Scholar 

  • Stefanou N, Modinos A (1993) Scattering of electromagnetic waves by a disordered two-dimensional array of spheres. J Phys Condens Matter 5:8859–8868

    Article  ADS  Google Scholar 

  • Stefanou N, Karathanos V, Modinos A (1992) Scattering of electromagnetic waves by periodic structures. J Phys Cond Mat 4:7389–7400

    Article  ADS  Google Scholar 

  • Stefanou N, Yannopapas V, Modinos A (1998) Heterostructures of photonic crystals: frequency bands and transmission coefficients. Comput Phys Commun 113:49–77

    Article  ADS  MATH  Google Scholar 

  • Stefanou N, Yannopapas V, Modinos A (2000) MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals. Comput Phys Commun 132:189–196

    Article  ADS  MATH  Google Scholar 

  • Sun W et al (2007) Modeling light scattered from and transmitted through dielectric periodic structures on a substrate. Appl Opt 46:1150–1156

    Article  ADS  Google Scholar 

  • Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Hoboken, Wiley Interscience, p 815

    Google Scholar 

  • Tishkovets VP, Jockers K (2006) Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation. J Quant Spectrosc Radiat Transf 101:54–72

    Google Scholar 

  • Tishkovets VP (2010) Radiation diffuse scattering by a densely packed layer of spherical particles. Radio Phys Radio Astron 1(1):69–77. https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v1.i1.90

  • Tishkovets VP (2007) Incoherent and coherent backscattering of light by a layer of densely packed random medium. J Quant Spectrosc Radiat Transf 108:454–463

    Article  ADS  Google Scholar 

  • Tishkovets VP, Petrova EV, Mishchenko MI (2011) Scattering of electromagnetic waves by ensembles of particles and discrete random media. J Quant Spectrosc Radiat Transf 112:2095–2127

    Article  ADS  Google Scholar 

  • Toušek J, Dolhov S, Toušková J (2003) Interpretation of minority carrier diffusion length measurements in thin silicon wafers. Solar Energy Mater Solar Cells 76:205–210

    Article  Google Scholar 

  • Trinks W (1935) Zur Vielfachstreuung an kleinen Kugeln. Annalen der Physik 22(5):561–590

    Article  ADS  MATH  Google Scholar 

  • Troparevsky MC et al (2010) Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference. Opt Exp 18(24):24715–24721

    Article  ADS  Google Scholar 

  • Tsai MA et al (2011) Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays. Opt Exp 19:A28–A34

    Article  ADS  Google Scholar 

  • Tsakalakos L (2008) Nanostructures for photovoltaics. Mater Sci Eng R 62:175–189

    Article  Google Scholar 

  • Tsang L et al (2000–2001) Scattering of electromagnetic waves, vol 3. Wiley, New York, vol 2, Num Simulat (2001), 705 p

    Google Scholar 

  • Tsang L et al (1992) Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model. IEEE Trans Geosci Remote Sens 30:1015–1024

    Article  ADS  Google Scholar 

  • Tsang L et al (2000) Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow. Radio Sci 35(3):731–749

    Google Scholar 

  • Tsang L et al (2007) Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE Trans Geosci Remote Sens 45(4):990–1004

    Article  ADS  Google Scholar 

  • Tsang L, Ishimaru A (1984) Backscattering enhancement of random discrete scatterers. J Opt Soc Am A 1(8):836–839

    Article  ADS  Google Scholar 

  • Tsang L, Ishimaru A (1985a) Theory of backscattering enhancement of random discrete isotropic scatterers based on the summation of all ladder and cyclical terms. J Opt Soc Am A 2(8):1331–1338

    Google Scholar 

  • Tsang L, Ishimaru A (1985b) Radiative wave and cyclical transfer equations for dense nontenuous media. J Opt Soc Am A 2(12):2187–2194

    Google Scholar 

  • Tsang L, Kong JA (1980) Multiple scattering of electromagnetic waves by random distributions of discrete scatterers with coherent potential and quantum mechanical formalism. J Appl Phys 51:3465–3485

    Article  ADS  Google Scholar 

  • Tsang L, Kong JA (1982a) Effective propagation constants for coherent electromagnetic wave propagation in media embedded with dielectric scatters. J Appl Phys 53(11):7162–7173

    Google Scholar 

  • Tsang L, Kong JA (1983) Scattering of electromagnetic waves from a half space of densely distributed dielectric scatterers. Radio Sci 18(6):1260–1272

    Article  ADS  Google Scholar 

  • Tsang L, Kong JA (1992a) Radiative wave equations for vector electromagnetic propagation in dense nontenuous media. J Electromagn Waves Appl 6(3):265–286

    Google Scholar 

  • Tsang L, Kong JA (1992b) Scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow. J Electromagn Waves Appl 6(3):265–286

    Google Scholar 

  • Tsang L, Kong JA, Hahashy T (1982) Multiple scattering of acoustic waves by random distribution of discrete spherical scatterers with the quasicrystalline and Percus-Yevick approximation. J Acoust Soc Am 71:552–558

    Google Scholar 

  • Tsang L, Mandt ChE, Ding KH (1992) Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations. Opt Lett 17(5):314–316

    Google Scholar 

  • Tsang L, Kong JA (2000–2001) Scattering of electromagnetic waves, vol 3. Wiley, New York, vol 3 Adv Top (2001), 413 p

    Google Scholar 

  • Tsang L, Kong JA, Ding K-H (2000–2001) Scattering of electromagnetic waves, vol 3. Wiley, New York, vol 1, Theories and applications (2000), 426 p

    Google Scholar 

  • Twersky V (1964) On propagation in random media of discrete scatterers. Proc Symp Appl Math Am Math Soc 16:84–116, Providence, RI

    Google Scholar 

  • Twersky V (1952a) Multiple scattering of radiation by an arbitrary planar configuration of parallel cylinders and by two parallel cylinders. J Appl Phys 23(4):407–414

    Google Scholar 

  • Twersky V (1952b) On a multiple scattering theory of the finite grating and the wood anomalies. J Appl Phys 23:1099–1118

    Google Scholar 

  • Twersky V (1952c) Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. J Acoust Soc Am 24:42–46

    Google Scholar 

  • Twersky V (1962a) On scattering of waves by random distributions. II. Two-space scatterer formalism. J Math Phys 3(4):724–734

    Google Scholar 

  • Twersky V (1962b) On scattering of waves by random distributions. I. Free-space scatterer formalism. J Math Phys 3(4):700–715

    Google Scholar 

  • Twersky V (1962c) Multiple scattering of waves and optical phenomena. J Opt Soc Am 52(2):145–171

    Google Scholar 

  • Twersky V (1962d) Multiple scattering by arbitrary configurations in three dimensions. J Math Phys 3(1):83–91

    Google Scholar 

  • Twersky V (1967) Multiple scattering of electromagnetic waves by arbitrary configurations. J Math Phys 8(3):589–610

    Article  ADS  Google Scholar 

  • Twersky V (1970a) Interface effects in multiple scattering by large, low-refracting, absorbing particles. J Opt Soc Am 60:908–914

    Google Scholar 

  • Twersky V (1970b) Absorption and multiple scattering by biological suspensions. J Opt Soc Am 60(8):1084–1093

    Google Scholar 

  • Twersky V (1975a) Multiple scattering of waves by the doubly periodic planar array of obstacles. J Math Phys 16(3):633–643

    Google Scholar 

  • Twersky V (1975b) Lattice sums and scattering coefficients for the rectangular planar array. J Math Phys 16(3):644–657

    Google Scholar 

  • Twersky V (1975c) Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea. J Opt Soc Am 65(5):524–530

    Google Scholar 

  • Twersky V (1978) Coherent electromagnetic waves in pair-correlated random distributions of aligned scatterers. J Math Phys 19:215–230

    Article  ADS  Google Scholar 

  • van de Hulst HC (1957) Light scattering by small particles. Wiley Interscience, New York (Chap. 4)

    Google Scholar 

  • van de Hulst HC (1980) Multiple light scattering. Tables, formulas, and applications, vols 1, 2. Academic, New York

    Google Scholar 

  • van Driel HM, Vos WL (2000) Multiple bragg wave coupling in photonic band-gap crystals. Phys Rev B 62(15):9872–9875

    Article  ADS  Google Scholar 

  • Varadan VK et al (1983) Multiple scattering theory for waves in discrete random media and comparison with experiments. Radio Sci 18:321–327

    Article  ADS  Google Scholar 

  • Varadan VV et al (1987) Effects of nonspherical statistics on EM wave propagation in discrete random media. Radio Sci 22(4):491–498

    Article  ADS  Google Scholar 

  • Varadan VV, Varadan VK (1980) Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatterers. Phys Rev D 21(2):388–394

    Article  ADS  MathSciNet  Google Scholar 

  • Varadan VK, Bringi VN, Varadan VV (1979) Coherent electromagnetic wave propagation through randomly distributed dielectric scatterers. Phys Rev D 19(8):2480–2489

    Article  ADS  Google Scholar 

  • Varadan VK, Ma Y, Varadan VV (1984) Coherent electromagnetic wave propagation through randomly distributed and oriented pair-correlated dielectric scatterers. Radio Sci 19(6):1445–1449

    Article  ADS  Google Scholar 

  • Varadan VK, Ma Y, Varadan VV (1985a) A multiple scattering theory for elastic wave propagation in discrete random media. J Acoust Soc Am 77(2):375–385

    Google Scholar 

  • Varadan VV, Ma Y, Varadan VK (1985b) Propagator model including multipole fields for discrete random media. JOSA A 2(12):2195–2201

    Google Scholar 

  • Varadan VK, Ma Y, Varadan VV (1989) Scattering and attenuation of elastic waves in random media. PAGEOPH 131:577–603

    Article  Google Scholar 

  • Varshalovich DA, Moskalev AN (1988) Khersonskii VK (1975) Quantum theory of angular momentum. World Scientific, Singapore, Nauka, Leningrad

    Book  Google Scholar 

  • Vasnetsov MV et al (2014) Photonic bandgap examination in an immersed synthetic opal. Appl Phys B 116(3):541–548

    Article  ADS  Google Scholar 

  • Vereshchagin VG et al (1991) Interference effects in multilayer scattering systems. J Appl Spectrosc 54(2):184–188

    Article  ADS  Google Scholar 

  • Vereshchagin VG, Ponyavina AN, Sil’vanovich NI (1990) Role of cooperative effects in formation of coherent field of densely-packed monolayer. Dokl Akad Nauk BSSR 34:123–126 (in Russian)

    Google Scholar 

  • Vladimirov A, Korovin S, Surkov A, Kelm E, Pustovoy V (2011) Synthesis of luminescent Si nanoparticles using the laser induced pyrolysis. Laser Phys 21:830–5

    Article  ADS  Google Scholar 

  • Voishvillo NA (1957) Influence of heat treatment on scattering properties of sodium borosilicate glass. Opt Spectrosc 2:371–376 (in Russian)

    Google Scholar 

  • Voishvillo NA (1962) To a question of coherent scattering of light in the glass. Opt Spectrosc 12:412–418

    Google Scholar 

  • Vynck K et al (2012) Photon management in two-dimensional disordered media. Nat Mater 11:1017–1022

    Article  ADS  Google Scholar 

  • Wang ZY et al (2015) Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays. Sci Rep 5:7810-1-6

    Google Scholar 

  • Wang X et al (1993) Multiple-scattering theory for electromagnetic waves. Phys Rev B 47(8):4161–4167

    Article  ADS  Google Scholar 

  • Wang ZL, Hu L, Ren W (1994) Multiple scattering of waves by a half-space of distributed discrete scatterers with modified T-matrix approach. J Phys D Appl Phys 27:441–446

    Article  ADS  MATH  Google Scholar 

  • Waterman PC (1969) New formulation of acoustic scattering. J Acoust Soc Am 45(6):1417–1429

    Article  ADS  MATH  Google Scholar 

  • Waterman PC (1971) Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D 3(4):825–839

    Article  ADS  Google Scholar 

  • Waterman PC, Pedersen NE (1986) Electromagnetic scattering by periodic arrays of particles. J Appl Phys 59:2609–2618

    Article  ADS  Google Scholar 

  • Waterman PC, Truell R (1961) Multiple scattering of waves. J Math Phys 2(4):512–537

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wehrspohn RB, Üpping J (2012) 3D photonic crystals for photon management in solar cells. J Opt 14:024003–024011

    Article  ADS  Google Scholar 

  • Wen B et al (1990) Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Trans Geosci Remote Sens 28(1):46–59

    Article  ADS  Google Scholar 

  • West R, Gibbs D, Tsang L, Fung AK (1994) Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media. JOSA A 11(6):1854–1858

    Article  ADS  Google Scholar 

  • Wiscombe WJ (1976) On initialization, error and flux conservation in the doubling method. JQSRT 16:637–658. https://doi.org/10.1016/0022-4073(76)90056-X

  • Wolf P-E, Maret G (1985) Weak localization and coherent backscattering of photons in disordered media. Phys Rev Lett 55:2696–2699

    Article  ADS  Google Scholar 

  • Xu Y (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34(21):4573–4588

    Article  ADS  Google Scholar 

  • Xu Y (1997) Electromagnetic scattering by an aggregate of spheres: far field. Appl Opt 36(36):9496–9508

    Article  ADS  Google Scholar 

  • Xu Y (1998a) Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories. J Comput Phys 139:137–165

    Google Scholar 

  • Xu Y (1998b) Electromagnetic scattering by an aggregate of spheres: asymmetry parameter. Phys Lett A 249:30–36

    Google Scholar 

  • Xu Y, Wang RT (1998) Electromagnetic scattering by an aggregate of spheres: theoretical and experimental study of the amplitude scattering matrix. Phys Rev E 58(3):3931–3948

    Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062

    Article  ADS  Google Scholar 

  • Yablonovitch E, Gmitter TJ (1989) Photonic band structure: the face-centered-cubic case. Phys Rev Lett 63(18):1950–1953

    Article  ADS  Google Scholar 

  • Yablonovitch E et al (1991a) Donor and acceptor modes in photonic band structure. Phys Rev Lett 67(24):3380–3383

    Google Scholar 

  • Yablonovitch E, Gmitter TJ, Leung KM (1991b) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67(17):2295–2298

    Google Scholar 

  • Yamasaki T, Tsutsui T (1999) Fabrication and optical properties of two-dimensional ordered arrays of silica microspheres. Jpn J Appl Phys 38:5916–5921

    Article  ADS  Google Scholar 

  • Yannopapas V (2014) Layer-multiple-scattering method for photonic structures of general scatterers based on a discrete-dipole approximation/T-matrix point-matching method. J Opt Soc Am B 31(3):631–636

    Article  ADS  Google Scholar 

  • Yannopapas V, Stefanou N, Modinos A (1997) Theoretical analysis of the photonic band structure of face-centred cubic colloidal crystals. J Phys Condens Matter 9:10261–10270

    Article  ADS  Google Scholar 

  • Yannopapas V, Modinos A, Stefanou N (1999) Optical properties of metallodielectric photonic crystals. Phys Rev B 60:5359–5365

    Article  ADS  Google Scholar 

  • Yannopapas V, Modinos A, Stefanou N (2002) Scattering and absorption of light by periodic and nearly periodic metallodielectric structures. Opt Quantum Electron 34:227–234

    Article  Google Scholar 

  • Yannopapas V, Modinos A, Stefanou N (2003) Anderson localization of light in inverted opals. Phys Rev B 68:193205-1–4

    Article  ADS  Google Scholar 

  • Yano S et al (2002) Optical properties of monolayer lattice and three-dimensional photonic crystals using dielectric spheres. Phys Rev B 66:075119–7

    Article  ADS  Google Scholar 

  • Yu FTS (1973) Introduction to diffraction. MTI Press, Cambridge, Information processing and holography

    Google Scholar 

  • Zaccanti G, Del Bianco S, Martelli F (2003) Measurements of optical properties of high-density media. Appl Opt 42:4023–4030

    Article  ADS  Google Scholar 

  • Zamkovets AD, Kachan SM, Ponyavina AN (2003a) Surface plasmon resonances and light selection in metal-dielectric nanostructures of various spatial arrangement. In: Borisenko VE et al Physics, chemistry and application of nanostructures: reviews and short notes to nanomeeting 2003, Minsk, 20-23 May 2003. World Scientific, Singapore, pp 151–154

    Google Scholar 

  • Zamkovets AD et al (2003b) Optical spectra of metal-dielectric nanocomposites with a layered subwave structure. J Appl Spectrosc 70(4):593–598

    Google Scholar 

  • Zege EP, Kokhanovsky AA (1991) Model of an amplitude-phase screen in the optics of close-packed media. Opt Spectrosc 70(3):367–370

    ADS  Google Scholar 

  • Zege EP, Ivanov AP, Katsev IL (1991a) Image transfer through a scattering medium. Springer, Berlin

    Google Scholar 

  • Zege EP, Katsev IL, Kokhanovsky AA (1991b) Fenomenological model of optical properties of strongly scattered layers and its application to the optics of foams. Opt Spectrosc 71:835–840

    Google Scholar 

  • Zender CS, Talamantes J (2006) Solar absorption by Mie resonances in cloud droplets. J Quant Spectrosc Radiat Transf 98:122–129

    Article  ADS  Google Scholar 

  • Zhang Z, Satpathy S (1990) Electromagnetic wave propagation in periodic structures: bloch wave solution of Maxwell’s Equations. Phys Rev Lett 65(21):2650–2653

    Article  ADS  Google Scholar 

  • Zharkova GM, Sonin AS (1994) Liquid-crystal composites. Nauka, Novosibirsk, 214 p (in Russian)

    Google Scholar 

  • Zhukas LA et al (2014) Size-dependent optical properties of polyethylene powders in far-IR region: on the way to universal matrix. J Quant Spectrosc Radiat Transf 147:1–7

    Article  ADS  Google Scholar 

  • Ziman J (1979) Models of disorder. Press, Cambridge, Univ, p 525

    Google Scholar 

  • Zyryanov VYa, Presnyakov VV, Loiko VA (2001) High contrast light modulator based on PDNLC monolayer. Mol Cryst Liq Cryst 368:215–222. https://doi.org/10.1080/10587250108029949

  • Zywietz U, Reinhardt C, Evlyukhin AB, Birr T, Chichkov BN (2014a) Generation and patterning of Si nanoparticles by femtosecond laser pulses. Appl Phys A 114:45–50

    Google Scholar 

  • Zywietz U, Evlyukhin AB, Reinhardt C, Chichkov BN (2014b) Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat Commun 5:1–7. Article no. 3402

    Google Scholar 

Download references

Acknowledgements

This investigation was supported in part by the Belarusian Republican Foundation for Fundamental Research. Project No. F15IC-005 and the state research program of the Republic of Belarus “Photonics, opto- and microelectronics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Loiko .

Editor information

Editors and Affiliations

Appendix. Expansion of Fields in Terms of Scattering Orders

Appendix. Expansion of Fields in Terms of Scattering Orders

Let us write the main equations of the theory of multiple scattering of waves (TMSW) in the form:

$$\begin{aligned} {\psi _\mathbf{r}}&= {\psi _\mathbf{r}^i} + \sum \limits _{j = 1}^N {{t_{\mathbf{r}j}}{\psi _j^e,}} \end{aligned}$$
(A.1)
$$\begin{aligned} {\psi _j^e}&= {\psi _j^i} + \sum \limits _{k = 1,k \ne j}^N {{t_{jk}}{\psi _k^e,}} \end{aligned}$$
(A.2)

Field \({\psi }_{\mathbf{r}}\), i.e. the solution of Eq. (A.1), can be found by putting the (A.2) into (A.1):

$$\begin{aligned} {\psi _\mathbf{r}}&= {\psi _\mathbf{r}^i} + \sum \limits _{j = 1}^N {{t_{\mathbf{r}j}}\left( {{\psi _j^i} + \sum \limits _{k = 1,k \ne j}^N {{t_{jk}}{\psi _k^e}} } \right) } = \nonumber \\&= {\psi _\mathbf{r}^i} + \sum \limits _{j = 1}^N {t_{\mathbf{r}j}}{\psi _j^i} + \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}}^N {{t_{\mathbf{r}j}}{t_{jk}}{\psi _k^i + }} \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}}^N \sum \limits _{\begin{array}{c} l = 1 \\ l \ne k \end{array}}^N {t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{\psi _l^i}\\&+ \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}}^N \sum \limits _{\begin{array}{c} l = 1 \\ l \ne k \end{array}}^N \sum \limits _{\begin{array}{c} m = 1 \\ m \ne l \end{array}}^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{t_{lm}}{\psi _m^i} + \cdots .}\nonumber \end{aligned}$$
(A.3)

The first term, \({\psi }_\mathbf{r}^{i}\), on the right side of (A.3) describes the field of incident wave in the observation point r. The second and third terms represent the sum of N and \(N(N-1)\) contributions of singly \(t_{\mathbf{r}j}{{{\psi }_{j}^{i}}}\) and doubly \(t_{\mathbf{r}j}t_{jk}{{{\psi }_{k}^{i }}}\) scattered waves, respectively. The fourth term describes the \(N(N-1)^{2}\) contributions of triple scattering. It concludes the terms with \(l=j\). Thus, this sum can be divided into two ones which describe three scattering events only by different particles, \(t_{\mathbf{r}j}t_{jk}t_{kl}{{\psi }_{l}^{i}}\) (\(k\ne j\), \(l\ne k\), \(l\ne j)\), and three scattering events at double passing by wave the same particle, \(t_{\mathbf{r}j}t_{jk}t_{kj}{{\psi }_{j}^{i}}\) (\(l=j\ne k)\), i.e. “forward-backward” scattering:

$$\begin{aligned} \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N \sum \limits _{\begin{array}{c} l = 1 \\ l \ne k \end{array}} ^N {t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{\psi _l^i} = \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N \sum \limits _{\begin{array}{c} l = 1 \\ l \ne k,l \ne j \end{array}} ^N {t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{\psi _l^i} + \sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kj}}{\psi _j^i.}} \end{aligned}$$
(A.4)

The fifth term in (A.3) describes the sum of \(N(N-1)^{3}\) events of fourfold scattering. It can be divided into the sums describing scattering events only on different particles and at passing by wave the particles more than one time:

$$\begin{aligned}&\sum \limits _{j = 1}^N \sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N \sum \limits _{\begin{array}{c} l = 1 \\ l \ne k \end{array}} ^N {\sum \limits _{\begin{array}{c} m = 1 \\ m \ne l \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{t_{lm}}{\psi _m^i} = \sum \limits _{j = 1}^N {\sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {\sum \limits _{\begin{array}{c} \,\,\,\,\,\,l = 1 \\ l \ne k,l \ne j \end{array}} ^N {\sum \limits _{\begin{array}{c} \,\,\,\,\,\,\,\,\,\,\,\,m = 1 \\ m \ne l,m \ne k,m \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{t_{lm}}{\psi _m^i} + \sum \limits _{j = 1}^N {\sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {\sum \limits _{\begin{array}{c} \,\,\,\,\,\,l = 1 \\ l \ne k,l \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{t_{lk}}{\psi _k^i} + } } } } } } } } } \nonumber \\&+ \sum \limits _{j = 1}^N {\sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {\sum \limits _{\begin{array}{c} \,\,\,\,\,\,l = 1 \\ l \ne k,l \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kl}}{t_{lj}}{\psi _j^i} + \sum \limits _{j = 1}^N {\sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {\sum \limits _{\begin{array}{c} \,\,\,\,\,\,\,m = 1 \\ m \ne k,m \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kj}}{t_{jm}}{\psi _m^i} + \sum \limits _{j = 1}^N {\sum \limits _{\begin{array}{c} k = 1 \\ k \ne j \end{array}} ^N {{t_{\mathbf{r}j}}{t_{jk}}{t_{kj}}{t_{jk}}{\psi _k^i}} } } } } } } } \end{aligned}$$
(A.5)

On the right side of (A.5) the first term describes \(N(N-1)(N-2)(N-3)\) events of fourfold scattering on different particles. The second, third, and fourth ones represent the \(N(N-1)(N-2)\), and fifth one describes the \(N(N-1)\) events of fourfold scattering at passing by wave the particles more than one time.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loiko, V.A., Miskevich, A.A. (2018). Multiple Scattering of Light in Ordered Particulate Media. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70796-9_2

Download citation

Publish with us

Policies and ethics