Skip to main content

Invariant Imbedding Theory for the Vector Radiative Transfer Equation

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

This chapter develops invariant imbedding theory as needed to solve the time-independent vector (polarized) radiative transfer equation (VRTE) for a plane-parallel water body bounded by a wind-blown sea surface and a reflective bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambartsumian VA (1943) On the issue of diffuse reflection of light by a turbid medium. Dokl Akad Nauk SSSR (in Russian) 38:229–232

    Google Scholar 

  • Bellman R, Kalaba R (1956) On the principle of invariant imbedding and propagation through inhomogeneous media. Proc Natl Acad Sci 42:629–632

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bellman R, Kalaba R, Wing GM (1960) Invariant imbedding and the reduction of two-point boundary value problems to initial value problems. Proc Natl Acad Sci 46(12):1646–1649

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bohren C, Huffman D (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Google Scholar 

  • Born M, Wolf E (1975) Principles of optics, 5th edn. Pergamon, Oxford

    Google Scholar 

  • Chandrasekhar S (1950) Radiative transfer. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Chowdhary J, Cairns B, Travis LD (2006) Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters. Appl Opt 45(22):5542–5567

    Article  ADS  Google Scholar 

  • Garcia RDM (2012) Fresnel boundary and interface conditions for polarized radiative transfer in a multilayer medium. J Quant Spectros Radiat Trans 113:306–307

    Article  ADS  Google Scholar 

  • Hecht E (1989) Optics, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  • Hovenier JW (1969) Symmetry relationships for scattering of polarized light in a slab of randomly oriented particles. J Atmos Sci 26:488–499

    Article  ADS  Google Scholar 

  • Hovenier JW (1971) Multiple scattering of polarized light in planetary atmospheres. Astron Astrophys 13:7–29

    ADS  Google Scholar 

  • Hu Y-X, Winker D, Yang P, Baum B, Poole L, Vann L (2001) Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study. J Quant Spectros Radiat Trans 70:569–579

    Article  ADS  Google Scholar 

  • Kattawar GW (1994) Polarization of light in the ocean. In: Spinrad RW, Carder KL, Perry MJ (eds) Ocean Optics. Oxford University Press, pp. 200–225

    Google Scholar 

  • Kattawar GW, Adams CN (1989) Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization. Limnol Oceanogr 34:1453–1472

    Article  ADS  Google Scholar 

  • Mishchenko MI (2007) Electromagnetic scattering by a fixed finite object embedded in an absorbing medium. Opt Express 15:13188–13202

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008a) Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation. J Quant Spectrosc Radiat Trans 109:2386–2390

    Article  ADS  Google Scholar 

  • Mishchenko MI (2008b) Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev Geophys 46:1–33

    Article  Google Scholar 

  • Mishchenko MI (2013a) 125 years of radiative transfer: Enduring triumphs and persistent misconceptions. In: Cahalan RF, Fischer J (eds) Radiation processes in the atmosphere and ocean, vol 1531. AIP Publishing, pp. 11–18. https://doi.org/10.1063/1.4804696

  • Mishchenko MI (2013b) Radiative transfer theory verified by controlled laboratory experiments. Opt Lett 38:3522–3525

    Article  ADS  Google Scholar 

  • Mishchenko MI (2014) Directional radiometry and radiative transfer: the convoluted path from centuries-old phenomenology to physical optics. J Quant Spect Radiat Trans 146:4–33

    Article  ADS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Mishchenko MI, Dlugach JM, Yurkin MA, Bi L, Cairns B, Liu L, Panetta RL, Travis LD, Yang P, Zakharova NT (2016) First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media. Phys Rep 632:1–75

    Article  ADS  MathSciNet  Google Scholar 

  • Mobley CD (1994) Light and Water: Radiative Transfer in Natural Waters. Academic Press, Cambridge

    Google Scholar 

  • Mobley CD (2014a) Hydropol Mathematical documentation: invariant imbedding theory for the vector radiative transfer equation. Technical report, Sequoia Scientific, Inc. http://www.oceanopticsbook.info/view/publications/references

  • Mobley CD (2014b) Modeling sea surfaces: a tutorial on fourier transform techniques. Technical report, Sequoia Scientific, Inc. http://www.oceanopticsbook.info/view/publications/references

  • Mobley CD (2015) Polarized reflectance and transmittance properties of windblown sea surfaces. Appl Opt 54:4828–4849

    Article  ADS  Google Scholar 

  • Preisendorfer RW (1958) Functional relations for the r and t operators on plane-parallel media. Proc Natl Acad Sci 44:323–237

    Google Scholar 

  • Preisendorfer RW (1965) Radiative transfer on discrete spaces. Pergamon Press, Oxford

    Google Scholar 

  • Preisendorfer RW (1976) Hydrologic optics. U.S. Department of Commerce, Pacific Marine Environ. Lab. In 6 volumes. www.oceanopticsbook.info/view/introduction/level_2/text_books_relevant_to_ocean_optics

  • Schott JR (1999) Fundamentals of Polarimetric Remote Sensing. SPIE Tutorial Text TT81. SPIE Press, Bellingham

    Google Scholar 

  • Sobolev VV (1956) The transmission of radiation through an inhomogeneous medium. Dokl Akad Nauk SSSR (in Russian) 111:1000–1003

    MATH  Google Scholar 

  • Stokes GG (1862) On the intensity of the light reflected from or transmitted through a pile of plates. Proc R Soc Lond 11:545–556

    Article  Google Scholar 

  • van de Hulst HC (1980) Multiple light scattering: tables, formulas, and applications. Academic Press, Cambridge

    Google Scholar 

  • Zhai P-W, Kattawar GW, Yang P (2008) Impulse response solution of the three-dimensional vector radiative transfer equation in atmosphere-ocean systems I. Monte Carlo Method Appl Opt 47:1037–1047

    Google Scholar 

  • Zhai P-W, Kattawar GW, Hu Y (2012) Comment on the transmission matrix for a dielectric interface. J Quant Spectrosc Radiat Trans 113:1981–1984

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Contract NNH12CD06C titled Radiative Transfer Modeling for Improved Ocean Color Remote Sensing. I thank three anonymous reviewers for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis D. Mobley .

Editor information

Editors and Affiliations

A Fourier Analysis of Discrete Functions

A Fourier Analysis of Discrete Functions

The invariant imbedding solution algorithm for the directionally discretized VRTE employs a Fourier decomposition of the equations in azimuthal direction. This appendix collects for reference various results for the Fourier decomposition of discrete functions of azimuthal angle, as needed in Sect. 1.5.

1.1.1 A.1 Functions of One Azimuthal Angle

Let \(f_v \equiv f(\phi _v)\) be any discrete function of the azimuthal angle \(\phi \), i.e., \(f_v\) is defined only at the discrete values \(\phi _v = (v-1)\varDelta \phi \), for \(v = 1, 2, ..., 2N\). Here \(\varDelta \phi = 2\pi /2N\) is the angular width of a quad as shown in Fig. 1.5; \(\varDelta \phi \) is the same for each quad. Let \(\delta _k\) be the Kronecker delta function defined by

$$\begin{aligned} \delta _k \equiv {\left\{ \begin{array}{ll} ~1 &{} \text {if}\,\,k = 0 \\ ~0 &{} \text {if}\,\,k \ne 0 \end{array}\right. } ~~~\mathrm{or~equivalently}~~~ \delta _{k-\ell } \equiv {\left\{ \begin{array}{ll} ~1 &{} \text {if}\,\,k = \ell \\ ~0 &{} \text {if}\,\,k \ne \ell \end{array}\right. } \end{aligned}$$
(1.187)

where k and \(\ell \) are integers.

The discrete orthogonality relations for sines and cosines can then be written

$$\begin{aligned} \sum _{s=1}^{2N} \cos (k \phi _s) \cos (\ell \phi _s) =&{\left\{ \begin{array}{ll} ~0 &{} \text {if}\,\,k \ne \ell \\ ~N &{} \text {if}\,\,k = \ell \,\,and\,\,\ell = 1, 2,..., N-1 \\ 2N &{} \text {if}\,\,k = \ell \,\,and\,\,\ell = 0 or \ell = N \end{array}\right. } \nonumber \\ =&~ N (\delta _{k+\ell } + \delta _{k - \ell } + \delta _{k + \ell - 2 N} ) \end{aligned}$$
(1.188)
$$\begin{aligned} \sum _{s=1}^{2N} \sin (k \phi _s) \sin (\ell \phi _s) =&{\left\{ \begin{array}{ll} 0 &{} \text {if}\,\,k \ne \ell \\ N &{} \text {if}\,\,k = \ell \,\,and\,\,\ell = 1, 2,..., N-1 \\ 0 &{} \text {if}\,\,k = \ell \,\,and\,\,\ell = 0\,\,or \ell = N \end{array}\right. } \nonumber \\ =&~ N (\delta _{k-\ell } - \delta _{k + \ell } - \delta _{k + \ell - 2 N} ) \end{aligned}$$
(1.189)

and

$$\begin{aligned} \sum _{s=1}^{2N} \cos (k \phi _s) \sin (\ell \phi _s) = 0 \quad \text {for all}\,\,k\,\,\text {and}\,\,\ell . \end{aligned}$$
(1.190)

A discrete function of one azimuthal angle (e.g., a discretized Stokes vector \(\underline{S}(\zeta ,u,v,j)\) with the depth \(\zeta \), polar angle u, and wavelength j being held constant) has the Fourier spectral decomposition

$$\begin{aligned} f(v) = \sum _{\ell = 0}^{N} \left[ \hat{f}_1 (\ell ) \cos (\ell \phi _v) + \hat{f}_2 (\ell ) \sin (\ell \phi _v) \right] \end{aligned}$$
(1.191)

where \(v = 1, 2, ..., 2N\). The notation \(\hat{f}\) denotes a Fourier amplitude of the corresponding physical variable f; subscript 1 denotes cosine amplitudes and subscript 2 denotes sine amplitudes. The cosine amplitudes \(\hat{f}_1 (\ell )\) are obtained by multiplying Eq. (1.191) by \(\cos (k \phi _v)\), summing over v, and applying the orthogonality relations to get

$$\begin{aligned} \hat{f}_1 (\ell ) = \frac{1}{\epsilon _l} \sum _{v=1}^{2N} f(v) \cos (\ell \phi _v) \quad \text {for } \ell = 0,1,...,N \end{aligned}$$
(1.192)

where

$$\begin{aligned} \epsilon _{\ell } = N (1 + \delta _{2 \ell } + \delta _{2 \ell - 2 N}) = {\left\{ \begin{array}{ll} 2N &{} \text {if}\,\,\ell = 0\,\,or\,\,\ell = N \\ ~N &{} \text {if}\,\,\ell = 1, 2,..., N-1 \end{array}\right. } \end{aligned}$$
(1.193)

Note that the \(\hat{f}_1 (0)\) amplitude is just the average value of f(v). The sine amplitudes \(\hat{f}_2 (\ell )\) are obtained in a similar way by multiplying (1.191) by \(\sin (k \phi _v)\):

$$\begin{aligned} \hat{f}_2 (\ell ) = \frac{1}{\gamma _l} \sum _{v=1}^{2N} f(v) \cos (\ell \phi _v) \quad \text {for } \ell = 1,...,N-1 \end{aligned}$$
(1.194)

where

$$\begin{aligned} \gamma _{\ell } = N (1 - \delta _{2 \ell } - \delta _{2 \ell - 2 N}) = {\left\{ \begin{array}{ll} 0 &{} \text {if}\,\,\ell = 0\,\,or\,\,\ell = N \\ N &{} \text {if}\,\,\ell = 1, 2,..., N-1 \end{array}\right. } \end{aligned}$$
(1.195)

Note that values of \(\gamma _0 = \gamma _N = 0\) do not occur in Eq. (1.194) for the sine amplitudes.

If f(v) is a constant f then \(\hat{f}_1(0) = f\) and all other cosine and sine components are zero. This is the case for a polar cap radiance, which has no azimuthal dependence. In general, the 2N values of f(v) are determined exactly by the \(N + 1\) cosine amplitudes and the \(N - 1\) sine amplitudes; the information content of the physical and Fourier representations is the same. In the Fourier decomposition of discrete functions all terms must be included; there can be no truncation of these summations.

1.1.2 A.2 Functions of the Difference of Two Azimuthal Angles

Let \(g_{\mathrm{cos}}(v,s) = g[\cos (\phi _v - \phi _s)]\) be a discrete cosine function of \(\phi _v -\phi _s\), where \(\phi _v\) and \(\phi _s\) are two azimuthal angles and \(v, s = 1, ..., 2N\). Then \(g_{\mathrm{cos}}(v,s)\) has the Fourier expansion (L&W 8.24)

$$\begin{aligned} g_{\mathrm{cos}}(v,s) = \sum _{k = 0}^{N} \hat{g}_{1} (k) \cos [k ( \phi _v - \phi _s) ] \,. \end{aligned}$$
(1.196)

Multiplying this equation by \(\cos (\ell \phi _v)\), summing over v, expanding the cosine, and using the orthogonality relations gives (L&W 8.25)

$$\begin{aligned} \hat{g}_1(\ell ) = \frac{1}{\epsilon _{\ell } \cos (\ell \phi _s)} \sum _{v = 1}^{2 N} g_{\mathrm{cos}}(v,s) \cos \ell \phi _v) \quad \text {for } \ell = 0,...,N \,. \end{aligned}$$
(1.197)

Similarly, let \(g_{\mathrm{sin}}(v,s) = g[\sin (\phi _v - \phi _s)]\) be a discrete sine function of \(\phi _v - \phi _s\). Then \(g_{\mathrm{sin}}(v,s)\) has the Fourier expansion

$$\begin{aligned} g_{\mathrm{sin}}(v,s) = \sum _{k = 1}^{N-1} \hat{g}_{2} (k) \sin [k ( \phi _v - \phi _s) ] \,. \end{aligned}$$
(1.198)

Multiplying this equation by \(\sin (\ell \phi _v)\), summing over v, expanding the sine, and using the orthogonality relations gives

$$\begin{aligned} \hat{g}_2(\ell ) = \frac{1}{\gamma _{\ell } \cos (\ell \phi _s)} \sum _{v = 1}^{2 N} g_{\mathrm{sin}}(v,s) \sin \ell \phi _v) \quad \text {for } \ell = 1,...,N-1 \,. \end{aligned}$$
(1.199)

These expansions will be used for the elements of the phase matrix , which depend on either the cosine or the sine of \(\phi _v - \phi _s\). Note that in Eqs. (1.197) and (1.199), the choice \(\phi _s = \phi _1 = 0\) can be made without loss of generality. This merely anchors the difference \(\phi _v - \phi _s\) to \(\phi _1 = 0\). The computer code then needs to compute and store phase function elements only for the range of \(v = 1,...,N+1\), which generates all discretized scattering angles \(\psi \) as \(\phi _v = 0 ~\mathrm{to}~ 180^\circ \). The phase matrix element \(\underline{P}(r,s \rightarrow u,v)\) is then obtained from the stored value of \(\underline{P}(r,1 \rightarrow u,v-s+1)\), which can be stored as a three-index array \(\underline{P}(r,u,v)\).

1.1.3 A.3 Functions of Two Azimuthal Angles

Finally, let \(h(s,v) = h(\phi _s,\phi _v)\) be an arbitrary function of two azimuthal angles. Then h(s, v) can be represented as

$$\begin{aligned} h(s,v) =&\sum _{k=0}^{N} \sum _{\ell =0}^{N} \hat{h}_{11}(k,\ell ) \cos (k \phi _s) \cos (\ell \phi _v) \nonumber \\ +&\sum _{k=0}^{N} \sum _{\ell =0}^{N} \hat{h}_{12}(k,\ell ) \cos (k \phi _s) \sin (\ell \phi _v) \nonumber \\ +&\sum _{k=0}^{N} \sum _{\ell =0}^{N} \hat{h}_{21}(k,\ell ) \sin (k \phi _s) \cos (\ell \phi _v) \nonumber \\ +&\sum _{k=0}^{N} \sum _{\ell =0}^{N} \hat{h}_{22}(k,\ell ) \sin (k \phi _s) \sin (\ell \phi _v) \,. \end{aligned}$$
(1.200)

To find \(\hat{h}_{11}\), multiply Eq. (1.200) by \(\cos (k ' \phi _s) \cos (\ell ' \phi _v)\), sum over s and v, and apply the orthogonality relations. The other three amplitudes are found in an analogous manner. The results are

$$\begin{aligned} \hat{h}_{11}(k,\ell ) =&~ \frac{1}{\epsilon _k \epsilon _{\ell }} \sum _{s=1}^{2N} \sum _{v=1}^{2N} h(s,v) \cos (k \phi _s) \cos (\ell \phi _v) \,, \nonumber \\ \hat{h}_{12}(k,\ell ) =&~ \frac{1}{\epsilon _k \gamma _{\ell }} \sum _{s=1}^{2N} \sum _{v=1}^{2N} h(s,v) \cos (k \phi _s) \sin (\ell \phi _v) \,, \nonumber \\ \hat{h}_{21}(k,\ell ) =&~ \frac{1}{\gamma _k \epsilon _{\ell }} \sum _{s=1}^{2N} \sum _{v=1}^{2N} h(s,v) \sin (k \phi _s) \cos (\ell \phi _v) \,, \nonumber \\ \hat{h}_{22}(k,\ell ) =&~ \frac{1}{\gamma _k \gamma _{\ell }} \sum _{s=1}^{2N} \sum _{v=1}^{2N} h(s,v) \sin (k \phi _s) \sin (\ell \phi _v) \,. \end{aligned}$$
(1.201)

The arbitrary zero sine amplitudes \(\hat{f}_2 (0)\) and \(\hat{f}_2 (N)\) have their counterparts here:

$$\begin{aligned} \hat{h}_{12}(k,0) =&~\hat{h}_{12}(k,N) = 0 \quad \mathrm{for\ } k = 0,...,N \,, \nonumber \\ \hat{h}_{21}(0,\ell ) =&~ \hat{h}_{21}(N,\ell ) = 0 \quad \mathrm{for\ } \ell = 0,...,N \,, \nonumber \\ \hat{h}_{22}(0,0) =&~\hat{h}_{22}(0,N) = \hat{h}_{22}(N,0) = \hat{h}_{22}(N,N) = 0 \,. \end{aligned}$$
(1.202)

These special cases allow the exclusion of any k or \(\ell \) values in Eq. (1.201) that would result in division by zero resulting from the \(\gamma _k\) and \(\gamma _{\ell }\) factors.

Equations (1.200)–(1.202) are applicable to the air-water surface transfer functions. However, the symmetries of those functions result in considerable simplification. In particular, all \(\hat{h}_{12}(k,\ell )\) and \(\hat{h}_{21}(k,\ell )\) are zero for the surface transfer functions.

The equations of Sect. 1.5.3 contain sums over k and \(\ell \) having the form

$$\begin{aligned} S1 = \sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell ) \left[ \sum _{s=1}^{2N} \cos [k(\phi _v - \phi _s)] \cos (\ell \phi _s) \right] \end{aligned}$$

where f(k) and \(g(\ell )\) are discrete functions of k and \(\ell \) for \(k, \ell = 0,...,N\). Application of the the trigonometric formula for the cosine of the difference of two angles and the previous equations reduces this to

$$\begin{aligned} S1 =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell )~ \Bigg \{ \left[ \sum _{s=1}^{2N} \cos (k \phi _s) \cos (\ell \phi _s) \right] \cos (k \phi _v) \nonumber \\ +&\left[ \sum _{s=1}^{2N} \sin (k \phi _s) \cos (\ell \phi _s) \right] \sin (k \phi _v) \Bigg \} \nonumber \\ =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell )~ N (\delta _{k+\ell } + \delta _{k - \ell } + \delta _{k + \ell - 2 N} ) \cos (k \phi _v) \nonumber \\ =&\sum _{l=0}^{N} f(\ell ) g(\ell )~ N (1 + \delta _{2\ell } + \delta _{2\ell - 2 N} ) \cos (\ell \phi _v) \nonumber \\ =&\sum _{l=0}^{N} \epsilon _{\ell } f(\ell ) g(\ell ) \cos (\ell \phi _v) \,. \end{aligned}$$
(1.203)

The same process gives

$$\begin{aligned} S2 =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell ) \left[ \sum _{s=1}^{2N} \cos [k(\phi _v - \phi _s)] \sin (\ell \phi _s) \right] \nonumber \\ =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell ) ~N (\delta _{k-\ell } - \delta _{k + \ell } - \delta _{k + \ell - 2 N} ) \sin (k \phi _v) \nonumber \\ =&\sum _{l=0}^{N} f(\ell ) g(\ell ) ~N (1 - \delta _{2\ell } - \delta _{2\ell - 2 N} ) \sin (\ell \phi _v) \nonumber \\ =&\sum _{l=0}^{N} \gamma _{\ell } f(\ell ) g(\ell ) \sin (\ell \phi _v) \,. \end{aligned}$$
(1.204)

Likewise

$$\begin{aligned} S3 =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell ) \left[ \sum _{s=1}^{2N} \sin [k(\phi _v - \phi _s)] \cos (\ell \phi _s) \right] \nonumber \\ =&\sum _{l=0}^{N} \epsilon _{\ell } f(\ell ) g(\ell ) \sin (\ell \phi _v) \,, \end{aligned}$$
(1.205)

and

$$\begin{aligned} S4 =&\sum _{l=0}^{N} \sum _{k=0}^{N} f(k) g(\ell ) \left[ \sum _{s=1}^{2N} \sin [k(\phi _v - \phi _s)] \sin (\ell \phi _s) \right] \nonumber \\ =&- \sum _{l=0}^{N} \gamma _{\ell } f(\ell ) g(\ell ) \cos (\ell \phi _v) \,. \end{aligned}$$
(1.206)

Note the minus sign in the last equation.

These results for the Fourier decomposition of discrete functions of one or two azimuthal angles provide all of the tools necessary for converting the discretized physical-space VRTE into discretized equations in Fourier space .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mobley, C.D. (2018). Invariant Imbedding Theory for the Vector Radiative Transfer Equation. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70796-9_1

Download citation

Publish with us

Policies and ethics