Skip to main content

Validation of Agent-Based Models in Economics and Finance

Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Since the survey by Windrum et al. (Journal of Artificial Societies and Social Simulation 10:8, 2007), research on empirical validation of agent-based models in economics has made substantial advances, thanks to a constant flow of high-quality contributions. This Chapter attempts to take stock of such recent literature to offer an updated critical review of the existing validation techniques. We sketch a simple theoretical framework that conceptualizes existing validation approaches, which we examine along three different dimensions: (i) comparison between artificial and real-world data; (ii) calibration and estimation of model parameters; and (iii) parameter space exploration. Finally, we discuss open issues in the field of ABM validation and estimation. In particular, we argue that more research efforts should be devoted toward advancing hypothesis testing in ABM, with specific emphasis on model stationarity and ergodicity.

Keywords

  • Agent-based models
  • Validation
  • Calibration
  • Sensitivity analysis
  • Parameter space exploration

JEL codes

  • C15
  • C52
  • C63

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The validation process might also take different perspectives. In particular, as reported by Burton and Obel (1995), the model’s assumptions and abstractions have to be judged accordingly with the model’s purpose. In this paper, we mostly focus on validation of policy-oriented, descriptive agent-based economic and financial models.

  2. 2.

    However, also other viable strategies are available: see, for example, the calibration approach proposed by Werker and Brenner (2004); Brenner and Werker (2007) and the history friendly models developed by Malerba et al. (1999).

  3. 3.

    In that there is a major departure with respect to neoclassical models, where the (representative) agent has axiomatic preferences and maximizes some smooth objective function with an easily computable bliss point.

  4. 4.

    This is also one of the critiques that is usually addressed to ACE. Since ABMs do not stick to some generally accepted axiomatic rule of behavior, they introduce discretionary choices that the modeler shall take. We will see how practitioners have coped with this issue in Sect. 31.4.2.1. A possible solution to discipline the construction phase of an ABMs has been put forward by Grimm et al. (2006) and is called the ODD protocol (from “Overview, Design concepts, and Details”).

  5. 5.

    As stated in Turrell (2016), the first agent-based model was developed in the 30s by the physicist Enrico Fermi in order to study the transport of neutrons through matter. Fermi’s agent-based technique was later called Monte Carlo method (Metropolis and Ulam 1949).

  6. 6.

    In Sect. 31.4.2, we will discuss the tools available for the verification and validation of ABMs.

  7. 7.

    One can also study the basins of attraction of the dynamical system to study the robustness with respect to initial conditions.

  8. 8.

    In agent- based modeling, some of the standard validity aspects that are relevant in many fields of numerical simulations are not an issue; for example, systems are always represented in discrete time and, hence, discretization errors are not possible. Further, low emphasis is usually posed on code verification.

  9. 9.

    See also Secchi and Seri (2017) on the issue of selecting the number of times a computational model should be run.

  10. 10.

    Level 0 models can be somehow accepted if their aim is merely exploratory rather than descriptive.

  11. 11.

    See, for example, Dosi et al. (2010, 2013, 2015, 2016a) for replication of business cycle and growth stylized facts; Dosi et al. (2017a) for accounting of labor-market micro and macro regularities; Popoyan et al. (2017) for the reproduction of many credit and interbank market properties; Lamperti et al. (2018a, b) for capturing coevolution of economic fundamentals with energy and emission quantities; Pellizzari and Dal Forno (2007); Leal et al. (2016) for simulating financial market booms and busts.

  12. 12.

    For a discussion of calibration and testability, see Chap. 40 by Frisch in this volume.

  13. 13.

    Benchmark models are, for example, the Brock and Hommes (1998) asset pricing model and the Kirman (1991) speculative bubbles model.

  14. 14.

    See also Boswijk et al. (2007); Bianchi et al. (2008b); Goldbaum and Mizrach (2008); Franke (2009); de Jong et al. (2010); Franke and Westerhoff (2012); Chiarella et al. (2014); Platt and Gebbie (2016).

  15. 15.

    For robustness of the model, we here mean the stability of the results to small variations of the parameters. See also Lorscheid et al. (2012) and Thiele et al. (2014).

  16. 16.

    See also Chap. 12 by Marks in this volume.

  17. 17.

    For other interesting approaches on pattern-based validation see Barde (2016b) and Marks (2018).

  18. 18.

    VAR-LiNGAM stands for Vector Autoregressive Linear Non-Gaussian Acyclic Model.

  19. 19.

    Coupling NOLH with kriging meta- modeling has been frequently used to approximate the output of computer simulation models (see, for example, McKay et al. 1979; Salle and Yıldızoğlu 2014; Bargigli et al. 2016).

  20. 20.

    The interested reader might want to look at Thiele et al. (2014) for a cookbook guiding model exploration and sensitivity and Grimm et al. (2005) for a pattern-oriented approach at model building and evaluation.

References

  • Alfarano, S., Lux, T., & Wagner, F. (2005). Estimation of agent-based models: The case of an asymmetric herding model. Computational Economics, 26(1), 19–49.

    CrossRef  MATH  Google Scholar 

  • Alfarano, S., Lux, T., & Wagner, F. (2006). Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data. Physica A: Statistical Mechanics and its Applications, 370(1), 38–42.

    CrossRef  MathSciNet  Google Scholar 

  • Anufriev, M., Bao, T., & Tuinstra, J. (2016). Microfoundations for switching behavior in heterogeneous agent models: An experiment. Journal of Economic Behavior & Organization, 129(C):74–99.

    Google Scholar 

  • Anufriev, M., & Hommes, C. (2012). Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments. American Economic Journal: Microeconomics, 4(4), 35–64.

    Google Scholar 

  • Assenza, T., Delli Gatti, D., & Grazzini, J. (2015). Emergent dynamics of a macroeconomic agent based model with capital and credit. Journal of Economic Dynamics and Control, 50(C):5–28.

    Google Scholar 

  • Assenza, T., Heemeijer, P., Hommes, C., & Massaro, D. (2013). Individual expectations and aggregate macro behavior. Tinbergen Institute Discussion Papers 13-016/II, Tinbergen Institute.

    Google Scholar 

  • Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press.

    Google Scholar 

  • Axtell, R. L., & Epstein, J. M. (1994). Agent-based modeling: Understanding our creations. The Bulletin of the Santa Fe Institute, 9(2), 28–32.

    Google Scholar 

  • Barde, S. (2016a). Direct comparison of agent-based models of herding in financial markets. Journal of Economic Dynamics and Control, 73(C):329–353.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Barde, S. (2016b). A practical, accurate, information criterion for nth order markov processes. Computational Economics, 1–44.

    Google Scholar 

  • Barde, S., & van der Hoog, S. (2017). An empirical validation protocol for large-scale agent-based models. Studies in Economics 1712, School of Economics, University of Kent.

    Google Scholar 

  • Bargigli, L., Riccetti, L., Russo, A., & Gallegati, M. (2016). Network calibration and metamodeling of a financial accelerator agent based model. Technical report, Università Politecnica delle Marche.

    Google Scholar 

  • Battiston, S., Farmer, J. D., Flache, A., Garlaschelli, D., Haldane, A. G., Heesterbeek, H., et al. (2016). Complexity theory and financial regulation. Science, 351(6275), 818–819.

    CrossRef  Google Scholar 

  • Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. (2007). Validating and calibrating agent-based models: A case study. Computational Economics, 30, 245–264.

    CrossRef  MATH  Google Scholar 

  • Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. (2008a). Validation in agent-based models: An investigation on the CATS model. Journal of Economic Behavior & Organization, 67, 947–964.

    CrossRef  Google Scholar 

  • Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. A. (2008b). Validation in agent-based models: An investigation on the CATS model. Journal of Economic Behavior & Organization, 67(3–4), 947–964.

    CrossRef  Google Scholar 

  • Boswijk, H. P., Hommes, C. H., & Manzan, S. (2007). Behavioral heterogeneity in stock prices. Journal of Economic Dynamics and Control, 31(6), 1938–1970.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press.

    Google Scholar 

  • Brenner, T., & Werker, C. (2007). A taxonomy of inference in simulation models. Computational Economics, 30(3), 227–244.

    CrossRef  Google Scholar 

  • Brock, W. A. (1999). Scaling in economics: A reader’s guide. Industrial and Corporate Change, 8(3), 409–446.

    CrossRef  MathSciNet  Google Scholar 

  • Brock, W. A., & Hommes, C. H. (1997). A rational route to randomness. Econometrica, 65(5), 1059–1095.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Brock, W. A., & Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22(8–9), 1235–1274.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model. Computational & Mathematical Organization Theory, 1(1), 57–71.

    CrossRef  Google Scholar 

  • Canova, F., & Sala, L. (2009). Back to square one: Identification issues in DSGE models. Journal of Monetary Economics, 56(4), 431–449.

    CrossRef  Google Scholar 

  • Chen, S.-H., Chang, C.-L., & Du, Y.-R. (2012). Agent-based economic models and econometrics. The Knowledge Engineering Review, 27(2), 187–219.

    CrossRef  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM.

    Google Scholar 

  • Chiarella, C., He, X.-Z., & Zwinkels, R. C. (2014). Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500. Journal of Economic Behavior & Organization, 105(C):1–16.

    Google Scholar 

  • Ciarli, T. (2012). Structural interactions and long run growth: An application of experimental design to agent-based models. Revue de l’OFCE, 124, 295–345.

    Google Scholar 

  • Dawid, H. & Delli Gatti, H. (2018). Chapter 2 - agent-based macroeconomics. In C. Hommes & B. LeBaron (Eds.), Handbook of computational economics (Vol. 4, pp. 63–156). Elsevier.

    Google Scholar 

  • Dawid, H., Harting, P., van der Hoog, S., & Neugart, M. (2016). A heterogeneous agent macroeconomic model for policy evaluation: Improving transparency and reproducibility.

    Google Scholar 

  • de Jong, E., Verschoor, W. F., & Zwinkels, R. C. (2010). Heterogeneity of agents and exchange rate dynamics: Evidence from the EMS. Journal of International Money and Finance, 29(8), 1652–1669.

    CrossRef  Google Scholar 

  • Del Negro, M., & Schorfheide, F. (2006). How good is what you’ve got? DSGE-VAR as a toolkit for evaluating DSGE models. Economic Review, (Q 2):21–37.

    Google Scholar 

  • Dieci, R., & He, X.-Z. (2018). Chapter 5 - heterogeneous agent models in finance. In C. Hommes & B. LeBaron (Eds.), Handbook of computational economics (Vol. 4, pp. 257–328). Elsevier.

    Google Scholar 

  • Dosi, G., Fagiolo, G., Napoletano, M., & Roventini, A. (2013). Income distribution, credit and fiscal policies in an agent-based keynesian model. Journal of Economic Dynamics and Control, 37(8), 1598–1625.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., & Treibich, T. (2015). Fiscal and monetary policies in complex evolving economies. Journal of Economic Dynamics and Control, 52, 166–189.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Dosi, G., Fagiolo, G., & Roventini, A. (2010). Schumpeter meeting keynes: A policy-friendly model of endogenous growth and business cycles. Journal of Economic Dynamics and Control, 34(9), 1748–1767.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Dosi, G., Napoletano, M., Roventini, A., & Treibich, T. (2016a). Micro and macro policies in the Keynes+Schumpeter evolutionary models. Journal of Evolutionary Economics, forthcoming, 1–28.

    Google Scholar 

  • Dosi, G., Pereira, M., Roventini, A., & Virgilito, M. E. (2017a). When more flexibility yields more fragility: The microfoundations of keynesian aggregate unemployment. Journal of Economic Dynamics & Control, 81, 162–186.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E. (2016b). The effects of labour market reforms upon unemployment and income inequalities: An agent based model (LEM Working Papers 2016/27). Scuola Superiore Sant’Anna.

    Google Scholar 

  • Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E. (2017b). Causes and consequences of hysteresis: Aggregate demand, productivity and employment (LEM Working Papers 2017/07). Scuola Superiore Sant’Anna.

    Google Scholar 

  • Dosi, G., Pereira, M. C., & Virgillito, M. E. (2017c). On the robustness of the fat-tailed distribution of firm growth rates: A global sensitivity analysis. Journal of Economic Interaction and Coordination, 1–21.

    Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Brookings Institution Press.

    Google Scholar 

  • Fabretti, A. (2013). On the problem of calibrating an agent based model for financial markets. Journal of Economic Interaction and Coordination, 8(2), 277–293.

    CrossRef  Google Scholar 

  • Fagiolo, G., & Dosi, G. (2003). Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents. Structural Change and Economic Dynamics, 14, 237–273.

    CrossRef  Google Scholar 

  • Fagiolo, G., & Roventini, A. (2012). Macroeconomic policy in DSGE and agent-based models. Revue de l’OFCE, 0(5), 67–116.

    Google Scholar 

  • Fagiolo, G., & Roventini, A. (2017). Macroeconomic policy in DSGE and agent-based models redux: New developments and challenges ahead. Journal of Artificial Societies and Social Simulation, 20(1).

    Google Scholar 

  • Farmer, D. J., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460, 685–686.

    CrossRef  Google Scholar 

  • Fernández-Villaverde, J., Ramírez, J. F. R., & Schorfheide, F. (2016). Solution and Estimation Methods for DSGE Models (NBER Working Papers 21862). National Bureau of Economic Research, Inc.

    Google Scholar 

  • Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2007). Estimating macroeconomic models: A likelihood approach. Review of Economic Studies, 74(4), 1059–1087.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Franke, R. (2009). Applying the method of simulated moments to estimate a small agent-based asset pricing model. Journal of Empirical Finance, 16(5), 804–815.

    CrossRef  Google Scholar 

  • Franke, R., & Westerhoff, F. (2012). Structural stochastic volatility in asset pricing dynamics: Estimation and model contest. Journal of Economic Dynamics and Control, 36(8), 1193–1211.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Gaffeo, E., Delli Gatti, D., Desiderio, S., & Gallegati, M. (2008). Adaptive microfoundations for emergent macroeconomics. Eastern Economic Journal, 34(4), 441–463.

    CrossRef  Google Scholar 

  • Goldbaum, D., & Mizrach, B. (2008). Estimating the intensity of choice in a dynamic mutual fund allocation decision. Journal of Economic Dynamics and Control, 32(12), 3866–3876.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect Inference. Journal of Applied Econometrics, 8(S):85–118.

    Google Scholar 

  • Grazzini, J., & Richiardi, M. (2015). Estimation of ergodic agent-based models by simulated minimum distance. Journal of Economic Dynamics and Control, 51(C):148–165.

    Google Scholar 

  • Grazzini, J., Richiardi, M. G., & Tsionas, M. (2017). Bayesian estimation of agent-based models. Journal of Economic Dynamics and Control, 77(C), 26–47.

    Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological modelling, 198(1–2), 115–126.

    CrossRef  Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.

    CrossRef  Google Scholar 

  • Guerini, M. (2013). Is the friedman rule stabilizing? Some unpleasant results in a heterogeneous expectations framework. Technical report, Department of Economics and Finance Working Papers, Unicatt, Milan.

    Google Scholar 

  • Guerini, M., & Moneta, A. (2017). A method for agent-based models validation. Journal of Economic Dynamics and Control.

    Google Scholar 

  • Guerini, M., Napoletano, M., & Roventini, A. (2017). No man is an island: The impact of heterogeneity and local interactions on macroeconomic dynamics. Economic Modelling.

    Google Scholar 

  • Hansen, L. P., & Heckman, J. J. (1996). The empirical foundations of calibration. The Journal of Economic Perspectives, 10(1), 87–104.

    CrossRef  Google Scholar 

  • Hassan, S., Pavon, J., & Gilbert, N. (2008). Injecting data into simulation: Can agent-based modelling learn from microsimulation. In World Congress of Social Simulation.

    Google Scholar 

  • Heine, B.-O., Meyer, M., & Strangfeld, O. (2005). Stylised facts and the contribution of simulation to the economic analysis of budgeting. Journal of Artificial Societies and Social Simulation, 8(4).

    Google Scholar 

  • Hommes, C. (2011). The heterogeneous expectations hypothesis: Some evidence from the lab. Journal of Economic Dynamics and Control, 35(1), 1–24.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Hommes, C. (2013). Behavioral rationality and heterogeneous expectations in complex economic systems. Number 9781107564978 in Cambridge Books. Cambridge University Press.

    Google Scholar 

  • Hyvarinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-gaussianity. Journal of Machine Learning Research, 11, 1709–1731.

    MathSciNet  MATH  Google Scholar 

  • Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration. With application to the demand for money. Oxford Bullettin of Economics and Statistics, 52, 169–210.

    CrossRef  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

    CrossRef  MATH  MathSciNet  Google Scholar 

  • Kirman, A. (1991). Epidemics of opinion and speculative bubbles in financial markets. In M. Taylor (Ed.), Money and financial markets (pp. 354–368). Blackwell.

    Google Scholar 

  • Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119–139.

    Google Scholar 

  • Kukacka, J., & Barunik, J. (2017). Estimation of financial agent-based models with simulated maximum likelihood. Journal of Economic Dynamics and Control, 85(C):21–45.

    Google Scholar 

  • Lamperti, F. (2018a). Empirical validation of simulated models through the GSL-div: An illustrative application. Journal of Economic Interaction and Coordination, 13(1), 143–171.

    CrossRef  Google Scholar 

  • Lamperti, F. (2018b). An information theoretic criterion for empirical validation of simulation models. Econometrics and Statistics, 5, 83–106.

    CrossRef  MathSciNet  Google Scholar 

  • Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., & Sapio, A. (2018a). Faraway, so close: Coupled climate and economic dynamics in an agent-based integrated assessment model. Ecological Economics, 150, 315–339.

    CrossRef  Google Scholar 

  • Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., Sapio, A., et al. (2018b). And then he wasn’t a she: Climate change and green transitions in an agent-based integrated assessment model. Technical report, Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy.

    Google Scholar 

  • Lamperti, F., Roventini, A., & Sani, A. (2018c). Agent-based model calibration using machine learning surrogates. Journal of Economic Dynamics and Control, 90, 366–389.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Lane, D. A. (1993). Artificial worlds and economics, part II. Journal of Evolutionary Economics, 3(3), 177–197.

    CrossRef  Google Scholar 

  • Leal, S. J., Napoletano, M., Roventini, A., & Fagiolo, G. (2016). Rock around the clock: An agent-based model of low- and high-frequency trading. Journal of Evolutionary Economics, 26(1), 49–76.

    CrossRef  Google Scholar 

  • LeBaron, B., & Tesfatsion, L. (2008). Modeling macroeconomies as open-ended dynamic systems of interacting agents. American Economic Review, 98(2), 246–250.

    CrossRef  Google Scholar 

  • Lee, J.-S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I., et al. (2015). The complexities of agent-based modeling output analysis. Journal of Artificial Societies and Social Simulation, 18(4), 4.

    CrossRef  Google Scholar 

  • Leombruni, R., Richiardi, M., Saam, N. J., & Sonnessa, M. (2006). A common protocol for agent-based social simulation. Journal of Artificial Societies and Social Simulation, 9(1), 15.

    Google Scholar 

  • Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the fiblack boxfiof simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62.

    CrossRef  Google Scholar 

  • Malerba, F., Nelson, R., Orsenigo, L., & Winter, S. (1999). ’History-friendly’ models of industry evolution: The computer industry. Industrial and Corporate Change, 8(1), 3.

    CrossRef  Google Scholar 

  • Manson, S. (Ed.). (2002). Validation and verification of multi-agent systems, in complexity and ecosystem management. Cheltenham: Edward Elgar.

    Google Scholar 

  • Marks, R. (2007). Validating simulation models: A general framework and four applied examples. Computational Economics, 30(3), 265–290.

    CrossRef  MATH  Google Scholar 

  • Marks, R. E. (2013). Validation and model selection: Three similarity measures compared. Complexity Economics, 2(1), 41–61.

    CrossRef  Google Scholar 

  • Marks, R. E. (2018). Pattern-based metrics for validating simulation model output. In C. Beisbart & N. J. Saam (Eds.), Computer simulation validation. Fundamental concepts, methodological frameworks, philosophical perspectives. Springer.

    Google Scholar 

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.

    MathSciNet  MATH  Google Scholar 

  • Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of American Statistical Association, 44, 335–341.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their discrepancies. SIAM Journal on Scientific Computing, 15(6), 1251–1279.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Paccagnini, A. (2010). DSGE model validation in a bayesian framework: An assessment. MPRA Paper 24509, University Library of Munich, Germany.

    Google Scholar 

  • Pellizzari, P., & Dal Forno, A. (2007). A comparison of different trading protocols in an agent-based market. Journal of Economic Interaction and Coordination, 2(1), 27–43.

    CrossRef  Google Scholar 

  • Platt, D., & Gebbie, T. (2016). Can agent-based models probe market microstructure? Papers 1611.08510, arXiv.org.

  • Popoyan, L., Napoletano, M., & Roventini, A. (2017). Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model. Journal of Economic Behavior & Organization, 134(C):117–140.

    Google Scholar 

  • Recchioni, M. C., Tedeschi, G., & Gallegati, M. (2015). A calibration procedure for analyzing stock price dynamics in an agent-based framework. Journal of Economic Dynamics and Control, 60, 1–25.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Oxford: Pergamon.

    MATH  Google Scholar 

  • Salle, I., & Yıldızoğlu, M. (2014). Efficient sampling and meta-modeling for computational economic models. Computational Economics, 44(4), 507–536.

    CrossRef  Google Scholar 

  • Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2), 488–493.

    Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2), 143–186.

    CrossRef  MATH  Google Scholar 

  • Secchi, D., & Seri, R. (2017). Controlling for false negatives in agent-based models: A review of power analysis in organizational research. Computational and Mathematical Organization Theory, 23(1), 94–121.

    CrossRef  Google Scholar 

  • Shimizu, S., Hoyer, P. O., Hyvarinen, A., & Kerminen, A. J. (2006). A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003–2030.

    MathSciNet  MATH  Google Scholar 

  • Simon, H. A. (1991). Bounded rationality and organizational learning. Organization Science, 2(1), 125–134.

    CrossRef  Google Scholar 

  • Spirtes, P., Glymur, C., & Scheines, R. (2000). Causation, prediction, and search. MIT Press.

    Google Scholar 

  • Tesfatsion, L. (2006). Chapter 16 agent-based computational economics: A constructive approach to economic theory. In Handbook of computational economics, 2 (pp. 831–880).

    Google Scholar 

  • Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using NetLogo and R. Journal of Artificial Societies and Social Simulation, 17(3), 11.

    CrossRef  Google Scholar 

  • Turrell, A. (2016). Agent-based models: Understanding the economy from the bottom up. Quarterly bulletin Q4, Bank of England.

    Google Scholar 

  • Van Beers, W. C. & Kleijnen, J. P. (2004). Kriging interpolation in simulation: A survey. In Simulation Conference, 2004. Proceedings of the 2004 Winter (vol. 1). IEEE.

    Google Scholar 

  • Werker, C., & Brenner, T. (2004). Empirical calibration of simulation models 0410. Papers on economics and evolution, Max-Planck-Institut für Ökonomik.

    Google Scholar 

  • Westerhoff, F. H., & Dieci, R. (2006). The effectiveness of keynes-tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach. Journal of Economic Dynamics and Control, 30(2), 293–322.

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, 10(2), 8.

    Google Scholar 

  • Winker, P., & Gilli, M. (2001). Validation of agent-based models of financial markets. IFAC Proceedings Volumes, 34(20), 401–406.

    CrossRef  Google Scholar 

  • Winker, P., & Gilli, M. (2004). Applications of optimization heuristics to estimation and modelling problems. Computational Statistics & Data Analysis, 47(2), 211–223.

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support by the European Union Horizon 2020 research and innovation programme under grant agreement No. 649186 - ISIGrowth. Further, we express our gratitude to Francesca Chiaromonte, Giovanni Dosi, Mauro Napoletano, Marcelo Pereira, Amir Sani, and Maria Enrica Virgillito for helpful comments and discussions on the issues surveyed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Fagiolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A., Roventini, A. (2019). Validation of Agent-Based Models in Economics and Finance. In: Beisbart, C., Saam, N. (eds) Computer Simulation Validation. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-70766-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70766-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70765-5

  • Online ISBN: 978-3-319-70766-2

  • eBook Packages: Computer ScienceComputer Science (R0)