Validation of Agent-Based Models in Economics and Finance

  • Giorgio FagioloEmail author
  • Mattia Guerini
  • Francesco Lamperti
  • Alessio Moneta
  • Andrea Roventini
Part of the Simulation Foundations, Methods and Applications book series (SFMA)


Since the survey by Windrum et al. (Journal of Artificial Societies and Social Simulation 10:8, 2007), research on empirical validation of agent-based models in economics has made substantial advances, thanks to a constant flow of high-quality contributions. This Chapter attempts to take stock of such recent literature to offer an updated critical review of the existing validation techniques. We sketch a simple theoretical framework that conceptualizes existing validation approaches, which we examine along three different dimensions: (i) comparison between artificial and real-world data; (ii) calibration and estimation of model parameters; and (iii) parameter space exploration. Finally, we discuss open issues in the field of ABM validation and estimation. In particular, we argue that more research efforts should be devoted toward advancing hypothesis testing in ABM, with specific emphasis on model stationarity and ergodicity.


Agent-based models Validation Calibration Sensitivityanalysis Parameter space exploration 

JEL codes

C15 C52 C63 



We gratefully acknowledge the support by the European Union Horizon 2020 research and innovation programme under grant agreement No. 649186 - ISIGrowth. Further, we express our gratitude to Francesca Chiaromonte, Giovanni Dosi, Mauro Napoletano, Marcelo Pereira, Amir Sani, and Maria Enrica Virgillito for helpful comments and discussions on the issues surveyed in this chapter.


  1. Alfarano, S., Lux, T., & Wagner, F. (2005). Estimation of agent-based models: The case of an asymmetric herding model. Computational Economics, 26(1), 19–49.zbMATHCrossRefGoogle Scholar
  2. Alfarano, S., Lux, T., & Wagner, F. (2006). Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data. Physica A: Statistical Mechanics and its Applications, 370(1), 38–42.MathSciNetCrossRefGoogle Scholar
  3. Anufriev, M., Bao, T., & Tuinstra, J. (2016). Microfoundations for switching behavior in heterogeneous agent models: An experiment. Journal of Economic Behavior & Organization, 129(C):74–99.Google Scholar
  4. Anufriev, M., & Hommes, C. (2012). Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments. American Economic Journal: Microeconomics, 4(4), 35–64.Google Scholar
  5. Assenza, T., Delli Gatti, D., & Grazzini, J. (2015). Emergent dynamics of a macroeconomic agent based model with capital and credit. Journal of Economic Dynamics and Control, 50(C):5–28.Google Scholar
  6. Assenza, T., Heemeijer, P., Hommes, C., & Massaro, D. (2013). Individual expectations and aggregate macro behavior. Tinbergen Institute Discussion Papers 13-016/II, Tinbergen Institute.Google Scholar
  7. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press.Google Scholar
  8. Axtell, R. L., & Epstein, J. M. (1994). Agent-based modeling: Understanding our creations. The Bulletin of the Santa Fe Institute, 9(2), 28–32.Google Scholar
  9. Barde, S. (2016a). Direct comparison of agent-based models of herding in financial markets. Journal of Economic Dynamics and Control, 73(C):329–353.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Barde, S. (2016b). A practical, accurate, information criterion for nth order markov processes. Computational Economics, 1–44.Google Scholar
  11. Barde, S., & van der Hoog, S. (2017). An empirical validation protocol for large-scale agent-based models. Studies in Economics 1712, School of Economics, University of Kent.Google Scholar
  12. Bargigli, L., Riccetti, L., Russo, A., & Gallegati, M. (2016). Network calibration and metamodeling of a financial accelerator agent based model. Technical report, Università Politecnica delle Marche.Google Scholar
  13. Battiston, S., Farmer, J. D., Flache, A., Garlaschelli, D., Haldane, A. G., Heesterbeek, H., et al. (2016). Complexity theory and financial regulation. Science, 351(6275), 818–819.CrossRefGoogle Scholar
  14. Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. (2007). Validating and calibrating agent-based models: A case study. Computational Economics, 30, 245–264.zbMATHCrossRefGoogle Scholar
  15. Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. (2008a). Validation in agent-based models: An investigation on the CATS model. Journal of Economic Behavior & Organization, 67, 947–964.CrossRefGoogle Scholar
  16. Bianchi, C., Cirillo, P., Gallegati, M., & Vagliasindi, P. A. (2008b). Validation in agent-based models: An investigation on the CATS model. Journal of Economic Behavior & Organization, 67(3–4), 947–964.CrossRefGoogle Scholar
  17. Boswijk, H. P., Hommes, C. H., & Manzan, S. (2007). Behavioral heterogeneity in stock prices. Journal of Economic Dynamics and Control, 31(6), 1938–1970.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press.Google Scholar
  19. Brenner, T., & Werker, C. (2007). A taxonomy of inference in simulation models. Computational Economics, 30(3), 227–244.CrossRefGoogle Scholar
  20. Brock, W. A. (1999). Scaling in economics: A reader’s guide. Industrial and Corporate Change, 8(3), 409–446.MathSciNetCrossRefGoogle Scholar
  21. Brock, W. A., & Hommes, C. H. (1997). A rational route to randomness. Econometrica, 65(5), 1059–1095.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Brock, W. A., & Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22(8–9), 1235–1274.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model. Computational & Mathematical Organization Theory, 1(1), 57–71.CrossRefGoogle Scholar
  24. Canova, F., & Sala, L. (2009). Back to square one: Identification issues in DSGE models. Journal of Monetary Economics, 56(4), 431–449.CrossRefGoogle Scholar
  25. Chen, S.-H., Chang, C.-L., & Du, Y.-R. (2012). Agent-based economic models and econometrics. The Knowledge Engineering Review, 27(2), 187–219.CrossRefGoogle Scholar
  26. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM.Google Scholar
  27. Chiarella, C., He, X.-Z., & Zwinkels, R. C. (2014). Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500. Journal of Economic Behavior & Organization, 105(C):1–16.Google Scholar
  28. Ciarli, T. (2012). Structural interactions and long run growth: An application of experimental design to agent-based models. Revue de l’OFCE, 124, 295–345.Google Scholar
  29. Dawid, H. & Delli Gatti, H. (2018). Chapter 2 - agent-based macroeconomics. In C. Hommes & B. LeBaron (Eds.), Handbook of computational economics (Vol. 4, pp. 63–156). Elsevier.Google Scholar
  30. Dawid, H., Harting, P., van der Hoog, S., & Neugart, M. (2016). A heterogeneous agent macroeconomic model for policy evaluation: Improving transparency and reproducibility.Google Scholar
  31. de Jong, E., Verschoor, W. F., & Zwinkels, R. C. (2010). Heterogeneity of agents and exchange rate dynamics: Evidence from the EMS. Journal of International Money and Finance, 29(8), 1652–1669.CrossRefGoogle Scholar
  32. Del Negro, M., & Schorfheide, F. (2006). How good is what you’ve got? DSGE-VAR as a toolkit for evaluating DSGE models. Economic Review, (Q 2):21–37.Google Scholar
  33. Dieci, R., & He, X.-Z. (2018). Chapter 5 - heterogeneous agent models in finance. In C. Hommes & B. LeBaron (Eds.), Handbook of computational economics (Vol. 4, pp. 257–328). Elsevier.Google Scholar
  34. Dosi, G., Fagiolo, G., Napoletano, M., & Roventini, A. (2013). Income distribution, credit and fiscal policies in an agent-based keynesian model. Journal of Economic Dynamics and Control, 37(8), 1598–1625.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., & Treibich, T. (2015). Fiscal and monetary policies in complex evolving economies. Journal of Economic Dynamics and Control, 52, 166–189.MathSciNetzbMATHCrossRefGoogle Scholar
  36. Dosi, G., Fagiolo, G., & Roventini, A. (2010). Schumpeter meeting keynes: A policy-friendly model of endogenous growth and business cycles. Journal of Economic Dynamics and Control, 34(9), 1748–1767.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Dosi, G., Napoletano, M., Roventini, A., & Treibich, T. (2016a). Micro and macro policies in the Keynes+Schumpeter evolutionary models. Journal of Evolutionary Economics, forthcoming, 1–28.Google Scholar
  38. Dosi, G., Pereira, M., Roventini, A., & Virgilito, M. E. (2017a). When more flexibility yields more fragility: The microfoundations of keynesian aggregate unemployment. Journal of Economic Dynamics & Control, 81, 162–186.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E. (2016b). The effects of labour market reforms upon unemployment and income inequalities: An agent based model (LEM Working Papers 2016/27). Scuola Superiore Sant’Anna.Google Scholar
  40. Dosi, G., Pereira, M. C., Roventini, A., & Virgillito, M. E. (2017b). Causes and consequences of hysteresis: Aggregate demand, productivity and employment (LEM Working Papers 2017/07). Scuola Superiore Sant’Anna.Google Scholar
  41. Dosi, G., Pereira, M. C., & Virgillito, M. E. (2017c). On the robustness of the fat-tailed distribution of firm growth rates: A global sensitivity analysis. Journal of Economic Interaction and Coordination, 1–21.Google Scholar
  42. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Brookings Institution Press.Google Scholar
  43. Fabretti, A. (2013). On the problem of calibrating an agent based model for financial markets. Journal of Economic Interaction and Coordination, 8(2), 277–293.CrossRefGoogle Scholar
  44. Fagiolo, G., & Dosi, G. (2003). Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents. Structural Change and Economic Dynamics, 14, 237–273.CrossRefGoogle Scholar
  45. Fagiolo, G., & Roventini, A. (2012). Macroeconomic policy in DSGE and agent-based models. Revue de l’OFCE, 0(5), 67–116.Google Scholar
  46. Fagiolo, G., & Roventini, A. (2017). Macroeconomic policy in DSGE and agent-based models redux: New developments and challenges ahead. Journal of Artificial Societies and Social Simulation, 20(1).Google Scholar
  47. Farmer, D. J., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460, 685–686.CrossRefGoogle Scholar
  48. Fernández-Villaverde, J., Ramírez, J. F. R., & Schorfheide, F. (2016). Solution and Estimation Methods for DSGE Models (NBER Working Papers 21862). National Bureau of Economic Research, Inc.Google Scholar
  49. Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2007). Estimating macroeconomic models: A likelihood approach. Review of Economic Studies, 74(4), 1059–1087.MathSciNetzbMATHCrossRefGoogle Scholar
  50. Franke, R. (2009). Applying the method of simulated moments to estimate a small agent-based asset pricing model. Journal of Empirical Finance, 16(5), 804–815.CrossRefGoogle Scholar
  51. Franke, R., & Westerhoff, F. (2012). Structural stochastic volatility in asset pricing dynamics: Estimation and model contest. Journal of Economic Dynamics and Control, 36(8), 1193–1211.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Gaffeo, E., Delli Gatti, D., Desiderio, S., & Gallegati, M. (2008). Adaptive microfoundations for emergent macroeconomics. Eastern Economic Journal, 34(4), 441–463.CrossRefGoogle Scholar
  53. Goldbaum, D., & Mizrach, B. (2008). Estimating the intensity of choice in a dynamic mutual fund allocation decision. Journal of Economic Dynamics and Control, 32(12), 3866–3876.MathSciNetzbMATHCrossRefGoogle Scholar
  54. Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect Inference. Journal of Applied Econometrics, 8(S):85–118.Google Scholar
  55. Grazzini, J., & Richiardi, M. (2015). Estimation of ergodic agent-based models by simulated minimum distance. Journal of Economic Dynamics and Control, 51(C):148–165.Google Scholar
  56. Grazzini, J., Richiardi, M. G., & Tsionas, M. (2017). Bayesian estimation of agent-based models. Journal of Economic Dynamics and Control, 77(C), 26–47.Google Scholar
  57. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological modelling, 198(1–2), 115–126.CrossRefGoogle Scholar
  58. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.CrossRefGoogle Scholar
  59. Guerini, M. (2013). Is the friedman rule stabilizing? Some unpleasant results in a heterogeneous expectations framework. Technical report, Department of Economics and Finance Working Papers, Unicatt, Milan.Google Scholar
  60. Guerini, M., & Moneta, A. (2017). A method for agent-based models validation. Journal of Economic Dynamics and Control.Google Scholar
  61. Guerini, M., Napoletano, M., & Roventini, A. (2017). No man is an island: The impact of heterogeneity and local interactions on macroeconomic dynamics. Economic Modelling.Google Scholar
  62. Hansen, L. P., & Heckman, J. J. (1996). The empirical foundations of calibration. The Journal of Economic Perspectives, 10(1), 87–104.CrossRefGoogle Scholar
  63. Hassan, S., Pavon, J., & Gilbert, N. (2008). Injecting data into simulation: Can agent-based modelling learn from microsimulation. In World Congress of Social Simulation.Google Scholar
  64. Heine, B.-O., Meyer, M., & Strangfeld, O. (2005). Stylised facts and the contribution of simulation to the economic analysis of budgeting. Journal of Artificial Societies and Social Simulation, 8(4).Google Scholar
  65. Hommes, C. (2011). The heterogeneous expectations hypothesis: Some evidence from the lab. Journal of Economic Dynamics and Control, 35(1), 1–24.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Hommes, C. (2013). Behavioral rationality and heterogeneous expectations in complex economic systems. Number 9781107564978 in Cambridge Books. Cambridge University Press.Google Scholar
  67. Hyvarinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-gaussianity. Journal of Machine Learning Research, 11, 1709–1731.MathSciNetzbMATHGoogle Scholar
  68. Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration. With application to the demand for money. Oxford Bullettin of Economics and Statistics, 52, 169–210.CrossRefGoogle Scholar
  69. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.zbMATHMathSciNetCrossRefGoogle Scholar
  70. Kirman, A. (1991). Epidemics of opinion and speculative bubbles in financial markets. In M. Taylor (Ed.), Money and financial markets (pp. 354–368). Blackwell.Google Scholar
  71. Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6), 119–139.Google Scholar
  72. Kukacka, J., & Barunik, J. (2017). Estimation of financial agent-based models with simulated maximum likelihood. Journal of Economic Dynamics and Control, 85(C):21–45.Google Scholar
  73. Lamperti, F. (2018a). Empirical validation of simulated models through the GSL-div: An illustrative application. Journal of Economic Interaction and Coordination, 13(1), 143–171.CrossRefGoogle Scholar
  74. Lamperti, F. (2018b). An information theoretic criterion for empirical validation of simulation models. Econometrics and Statistics, 5, 83–106.MathSciNetCrossRefGoogle Scholar
  75. Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., & Sapio, A. (2018a). Faraway, so close: Coupled climate and economic dynamics in an agent-based integrated assessment model. Ecological Economics, 150, 315–339.CrossRefGoogle Scholar
  76. Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., Sapio, A., et al. (2018b). And then he wasn’t a she: Climate change and green transitions in an agent-based integrated assessment model. Technical report, Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy.Google Scholar
  77. Lamperti, F., Roventini, A., & Sani, A. (2018c). Agent-based model calibration using machine learning surrogates. Journal of Economic Dynamics and Control, 90, 366–389.MathSciNetzbMATHCrossRefGoogle Scholar
  78. Lane, D. A. (1993). Artificial worlds and economics, part II. Journal of Evolutionary Economics, 3(3), 177–197.CrossRefGoogle Scholar
  79. Leal, S. J., Napoletano, M., Roventini, A., & Fagiolo, G. (2016). Rock around the clock: An agent-based model of low- and high-frequency trading. Journal of Evolutionary Economics, 26(1), 49–76.CrossRefGoogle Scholar
  80. LeBaron, B., & Tesfatsion, L. (2008). Modeling macroeconomies as open-ended dynamic systems of interacting agents. American Economic Review, 98(2), 246–250.CrossRefGoogle Scholar
  81. Lee, J.-S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I., et al. (2015). The complexities of agent-based modeling output analysis. Journal of Artificial Societies and Social Simulation, 18(4), 4.CrossRefGoogle Scholar
  82. Leombruni, R., Richiardi, M., Saam, N. J., & Sonnessa, M. (2006). A common protocol for agent-based social simulation. Journal of Artificial Societies and Social Simulation, 9(1), 15.Google Scholar
  83. Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the fiblack boxfiof simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62.CrossRefGoogle Scholar
  84. Malerba, F., Nelson, R., Orsenigo, L., & Winter, S. (1999). ’History-friendly’ models of industry evolution: The computer industry. Industrial and Corporate Change, 8(1), 3.CrossRefGoogle Scholar
  85. Manson, S. (Ed.). (2002). Validation and verification of multi-agent systems, in complexity and ecosystem management. Cheltenham: Edward Elgar.Google Scholar
  86. Marks, R. (2007). Validating simulation models: A general framework and four applied examples. Computational Economics, 30(3), 265–290.zbMATHCrossRefGoogle Scholar
  87. Marks, R. E. (2013). Validation and model selection: Three similarity measures compared. Complexity Economics, 2(1), 41–61.CrossRefGoogle Scholar
  88. Marks, R. E. (2018). Pattern-based metrics for validating simulation model output. In C. Beisbart & N. J. Saam (Eds.), Computer simulation validation. Fundamental concepts, methodological frameworks, philosophical perspectives. Springer.Google Scholar
  89. McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.MathSciNetzbMATHGoogle Scholar
  90. Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of American Statistical Association, 44, 335–341.MathSciNetzbMATHCrossRefGoogle Scholar
  91. Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their discrepancies. SIAM Journal on Scientific Computing, 15(6), 1251–1279.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Paccagnini, A. (2010). DSGE model validation in a bayesian framework: An assessment. MPRA Paper 24509, University Library of Munich, Germany.Google Scholar
  93. Pellizzari, P., & Dal Forno, A. (2007). A comparison of different trading protocols in an agent-based market. Journal of Economic Interaction and Coordination, 2(1), 27–43.CrossRefGoogle Scholar
  94. Platt, D., & Gebbie, T. (2016). Can agent-based models probe market microstructure? Papers 1611.08510,
  95. Popoyan, L., Napoletano, M., & Roventini, A. (2017). Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model. Journal of Economic Behavior & Organization, 134(C):117–140.Google Scholar
  96. Recchioni, M. C., Tedeschi, G., & Gallegati, M. (2015). A calibration procedure for analyzing stock price dynamics in an agent-based framework. Journal of Economic Dynamics and Control, 60, 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  97. Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Oxford: Pergamon.zbMATHGoogle Scholar
  98. Salle, I., & Yıldızoğlu, M. (2014). Efficient sampling and meta-modeling for computational economic models. Computational Economics, 44(4), 507–536.CrossRefGoogle Scholar
  99. Schelling, T. C. (1969). Models of segregation. The American Economic Review, 59(2), 488–493.Google Scholar
  100. Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Mathematical Sociology, 1(2), 143–186.zbMATHCrossRefGoogle Scholar
  101. Secchi, D., & Seri, R. (2017). Controlling for false negatives in agent-based models: A review of power analysis in organizational research. Computational and Mathematical Organization Theory, 23(1), 94–121.CrossRefGoogle Scholar
  102. Shimizu, S., Hoyer, P. O., Hyvarinen, A., & Kerminen, A. J. (2006). A linear non-gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003–2030.MathSciNetzbMATHGoogle Scholar
  103. Simon, H. A. (1991). Bounded rationality and organizational learning. Organization Science, 2(1), 125–134.CrossRefGoogle Scholar
  104. Spirtes, P., Glymur, C., & Scheines, R. (2000). Causation, prediction, and search. MIT Press.Google Scholar
  105. Tesfatsion, L. (2006). Chapter 16 agent-based computational economics: A constructive approach to economic theory. In Handbook of computational economics, 2 (pp. 831–880).Google Scholar
  106. Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using NetLogo and R. Journal of Artificial Societies and Social Simulation, 17(3), 11.CrossRefGoogle Scholar
  107. Turrell, A. (2016). Agent-based models: Understanding the economy from the bottom up. Quarterly bulletin Q4, Bank of England.Google Scholar
  108. Van Beers, W. C. & Kleijnen, J. P. (2004). Kriging interpolation in simulation: A survey. In Simulation Conference, 2004. Proceedings of the 2004 Winter (vol. 1). IEEE.Google Scholar
  109. Werker, C., & Brenner, T. (2004). Empirical calibration of simulation models 0410. Papers on economics and evolution, Max-Planck-Institut für Ökonomik.Google Scholar
  110. Westerhoff, F. H., & Dieci, R. (2006). The effectiveness of keynes-tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach. Journal of Economic Dynamics and Control, 30(2), 293–322.MathSciNetzbMATHCrossRefGoogle Scholar
  111. Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, 10(2), 8.Google Scholar
  112. Winker, P., & Gilli, M. (2001). Validation of agent-based models of financial markets. IFAC Proceedings Volumes, 34(20), 401–406.CrossRefGoogle Scholar
  113. Winker, P., & Gilli, M. (2004). Applications of optimization heuristics to estimation and modelling problems. Computational Statistics & Data Analysis, 47(2), 211–223.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giorgio Fagiolo
    • 1
    Email author
  • Mattia Guerini
    • 1
    • 2
  • Francesco Lamperti
    • 1
    • 3
  • Alessio Moneta
    • 1
  • Andrea Roventini
    • 1
    • 2
  1. 1.Istituto di Economia, Scuola Superiore Sant’AnnaPisaItaly
  2. 2.OFCE - Sciences PoParisFrance
  3. 3.FEEMMilanoItaly

Personalised recommendations