Skip to main content

Optical Waveguides

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

  • 504 Accesses

Abstract

Optical-fiber sensors have two distinct roles in sensing. Firstly, they enable the registration of opto-mechanical and opto-chemical interactions under investigation. The second role is to serve as a channel of communication for remote sensing. This is particularly useful in subsurface or hazardous environments. Optical fibers can efficiently transmit light in wavelengths ranging from the higher range of Ultraviolet radiation to Near-Infrared wavelengths. Developments in optical waveguides and components in microelectronics and communications, such as those utilized in long-distance communication or short distance applications for vehicles and local area networks, have also led to advances in research and development for the sensing community. When combined with advances made in molecular probes for analytical chemistry and biology, optical waveguides have made significant contributions to sensing in both the physical and chemical domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Burgess, L. W. (1992). Optical waveguides for chemical sensing. In 22nd International Conference on Environmental Systems, July 13–16, 1992. 1992, SAE International.

    Google Scholar 

  • Calcerrada, M., Garcia-Ruiz, C., & Gonzalez-Herraez, M. (2015). Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser and Photonics Reviews, 9(6), 604–627.

    Article  Google Scholar 

  • Dai, X., Mihailov, S. J., & Blanchetiere, C. (2010). Optical evanescent field waveguide Bragg grating pressure sensor. Optical Engineering, 49(2).

    Article  Google Scholar 

  • Ezekiel, S., & Arditty, H. J. (1982). Fiber-Optic Rotation Sensors and Related Technologies. First International Conference MIT, Nov 9–11, 1981.1982, Springer-Verlag.

    Google Scholar 

  • Fernando, G. F., Webb, D. J., & Ferdinand, P. (2002). Optical-fiber sensors. MRS Bulletin, 27(5), 359–361.

    Article  Google Scholar 

  • Fresi, F., Imran, M., Malacarne, A., Meloni, G., Sorianello, V., Forestieri, E., et al. (2017). Advances in optical technologies and techniques for high capacity communications. Journal of Optical Communications and Networking, 9(4), C64.

    Article  Google Scholar 

  • Habel, W. R., & Hillemeier, B. (1995). Results in monitoring and assessment of damages in large steel and concrete structures by means of fiber optic sensors. Smart Structures and Materials, 26 Feb–3 Mar, 1995. 1995 SPIE.

    Google Scholar 

  • Habel, W.R. & Hofmann, D. (1994). Strain measurements in reinforced concrete walls during the hydration reaction by means of embedded fibre interferometers. Smart Structures and Materials: Second European Conference, 12–14 October, 1994. 1994 SPIE.

    Google Scholar 

  • Hassanzadeh, A., & Azami, D. (2014). Waveguide evanescent field fluorescence microscopy: Theoretical investigation of optical pressure on a cell. Journal of Nanophotonics, 8(1).

    Article  Google Scholar 

  • Higazy, M., de Vries, M. J., Abdel-Ghaffar, A. M., Claus, R. O., Masri, S. F., & Agbabian, M. S. (1994). Experimental study of embedded fiber-optic strain gauges in concrete structures. Journal of Engineering Mechanics, 120(8), 1696–1717.

    Article  Google Scholar 

  • Hill, K. O., Malo, B., Bilodeau, F., Johnson, D. C., & Albert, J. (1993). Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, 62(10), 1035.

    Article  Google Scholar 

  • Kanno, A. (2017). Millimeter- and terahertz-wave over fiber technologies for high-speed communication and non-telecom applications. In Photonics West OPTO Conference on Broadband Access Communication Technologies XI, January 31–February 1, 2017. 2017, SPIE, Optical Instrumentation Engineers.

    Google Scholar 

  • Kumari, B., Barh, A., Varshney, R. K., & Pal, B. P. (2014). Mid-IR evanescent field gas sensor based on silicon-on-nitride slot waveguide. In 12th International Conference on Fiber Optics and Photonics, Photonics, December 13–16, 2014. 2014, Optical Society of America (OSA).

    Google Scholar 

  • Meltz, G., Morey, W. W., & Glenn, W. H. (1989). Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 14(15), 823–825.

    Article  Google Scholar 

  • Pospíšilová, M., Kuncová, G., & Trögl, J. (2015). Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors, 15(10), 25208–25259.

    Article  Google Scholar 

  • Poumellec, B. (1995). UV induced densification during Bragg grating inscription in Ge: SiO2 preforms: Interferometric microscopy investigations. Optical Materials, 4(2–3), 404–409.

    Article  Google Scholar 

  • Qazi, H. H., Mohammad, A. B. B., & Akram, M. (2012). Recent progress in optical chemical sensors. Sensors, 12(12), 16522–16556.

    Article  Google Scholar 

  • Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B., & Kamaruddin, R. (2013). Toward optical sensors: Review and applications. In 2013 International Conference on Science and Engineering in Mathematics, Chemistry and Physics, SciTech, January 24–25, 2013. 2013, Institute of Physics Publishing.

    Google Scholar 

  • Sequeira, F., Bilro, L., Rudnitskaya, A., Pesavento, M., Zeni, L., & Cennamo, N. (2016). Optimization of an evanescent field sensor based on D-shaped plastic optical fiber for chemical and biochemical sensing. In 30th Eurosensors Conference,  September 4–7, 2016. 2016, Elsevier Ltd., pp. 810–813.

    Article  Google Scholar 

  • Stephens, M. D., Yuan, G., Lear, K. L., & Dandy, D. S. (2010). Optical and physical characterization of a local evanescent array coupled biosensor: Use of evanescent field perturbations for multianalyte sensing. Sensors and Actuators, B: Chemical, 145(2), 769–774.

    Article  Google Scholar 

  • Udd, E., & Spillman, W. B. (2011). Fiber optic sensors: An introduction for engineers and scientists (2nd ed.). Somerset: Wiley.

    Book  Google Scholar 

  • Wang, J., Wei, J., Yang, B., Gao, Z., Zhang, L., & Yang, X. (2014). The recent development of fiber-optic chemical sensor. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 34(8), 2035–2039.

    Google Scholar 

  • Willsch, R., Ecke, W., & Bartelt, H. (2011). Optical fiber sensor research and industry in Germany: Review and outlook. In 21st International Conference on Optical Fiber Sensors, May 15–19, 2011. 2011, SPIE, Inc.; CMC Microsystems Corporation; Innovative Economy: National Strategic Reference Framework.

    Google Scholar 

  • Yinian, Z., Chao, L., & Ping, S. (2002). Photonic crystal fibers and their applications in optical communications and sensors. Optical Fiber and Planar Waveguide Technology II, October 16, 2002–October 18, 2002, SPIE, pp. 37–42.

    Google Scholar 

  • Yuan, G., Stephens, M. D., Dandy, D. S. and Lear, K. L. (2004). Novel local evanescent field detection waveguide multianalyte biosensor. In Optical Information Systems II, August 4, 2004–August 5, 2004, SPIE, pp. 140–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M. (2018). Optical Waveguides. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics