Skip to main content

Optical Phenomenology for Materials Health Monitoring

  • Chapter
  • First Online:
Optical Phenomenology and Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 28))

  • 483 Accesses

Abstract

Advances in photonics has led to remarkable growth in the development of optical sensors and components. These developments, combined with recent advances in optical materials, have helped convert bench-top-style optical instruments into compact sensors and sensor systems. These technologies are likely to have a significant impact on the quantitative analysis of the environment enabling deeper insights into materials performance in service. Ultimately, this will lead to better scheduling of infrastructure remediation and repair cycles, as well as the identification and quantification of species of concern in the environment, with potentially significant benefits to population health. It is expected that the applications of advanced optical diagnostics to phenomenology across the domains of infrastructure and environment will address knowledge gaps in both theory and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsubaie, A., Alutaibi, K., & Marti, J. (2016). Resilience assessment of interdependent critical infrastructure. In 10th International Conference on Critical Information Infrastructures Security, CRITIS 2015, October 5, 2015–October 7, 2015 (pp. 43–55). Berlin: Springer.

    Google Scholar 

  • ASCE. (2009). 2009 Report Card for America’s Infrastructure. America’s Infrastructure Advisory Council, ASCE.

    Google Scholar 

  • Barton, F. (2003). Theory and principles of near infrared spectroscopy. Spectroscopy Europe, (March) (pp. 4–6).

    Google Scholar 

  • Baumann, T., Haaszio, S., & Niessner, R. (2000). Applications of a laser-induced fluorescence spectroscopy sensor in aquatic systems. Water Research, 34(4), 1318–1326.

    Article  Google Scholar 

  • Bentur, A., Diamond, S., & Berke, N. (1997). Steel corrosion in concrete: Fundamentals and civil engineering practice. Taylor & Francis.

    Google Scholar 

  • Böhni, H. (2005). Corrosion in reinforced concrete structures. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Burgess, L. W. (1992). Optical waveguides for chemical sensing. In 22nd International Conference on Environmental Systems, July 13, 1992–July 16, 1992. SAE International.

    Google Scholar 

  • Czarnecki, L., & Woyciechowski, P. (2013). Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 173–181.

    Google Scholar 

  • D’agostino, G., Bologna, S., Fioriti, V., Casalicchio, E., Brasca, L., & Ciapessoni, E. (2010). Methodologies for interdependency assessment. In  5th International Conference on Critical Infrastructure, September 20–22, 2010 (pp. 1–7). Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • DOT. (2016). Protecting our infrastructure of pipelines and enhancing safety act of 2016.

    Google Scholar 

  • Elster, J. L., Greene, J. A., Jones, M. E., Bailey, T. A., Lenahan, S. M., Velander, W. H., et al. (1999, February). Optical-fiber-based chemical sensors for detection of corrosion precursors and by-products.

    Google Scholar 

  • Feng, M. Q. (1994). An optical fiber sensor for measurement of dynamic structural response. Journal of Intelligent Material Systems and Structures, 5(6), 847–853.

    Article  Google Scholar 

  • Ge, Z., Brown, C. W., Sun, L., & Yang, S. C. (1993). Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Analytical Chemistry, 65(17), 2335–2338.

    Article  Google Scholar 

  • George, S. (2016-last update, April). Pipeline safety bill puts new focus on aging gas infrastructure. Available: EDF http://blogs.edf.org/energyexchange/2016/04/01/pipeline-safety-bill-puts-new-focus-on-aging-gas-infrastructure/, February 2017.

  • Ghandehari, M., Aghamohamadnia, M., Dobler, G., Karpf, A., Buckland, K., Qian, J., & Koonin, S. (2017). Mapping refrigerant gases in the New York City Skyline. NATURE Scientific Report.

    Google Scholar 

  • Gouterman, M., Callis, J., Dalton, L., Khalil, G., Mébarki, Y., Cooper, K. R., et al. (2004). Dual luminophor pressure-sensitive paint: III. Application to automotive model testing. Measurement Science & Technology, 15(10), 1986–1994.

    Article  Google Scholar 

  • Gouterman, M., Hall, R. J., Khalil, G. E., Martin, P. C., Shankland, E. G., & Cerny, R. L. (1989). Tetrakis (pentafluorophenyl) porpholactone. Journal of the American Chemical Society, 111(10), 3702–3707.

    Article  Google Scholar 

  • Grant, A., Davies, A. M. C., & Bilverstone, T. (1989). Simultaneous determination of sodium hydroxide, sodium carbonate and sodium chloride concentrations in aqueous solutions by near-infrared spectrometry. Analyst, 114(7), 819–822.

    Article  Google Scholar 

  • Higazy, M., de Vries, M. J., Abdel-Ghaffar, A. M., Claus, R. O., Masri, S. F., & Agbabian, M. S. (1994). Experimental study of embedded fiber-optic strain gauges in concrete structures. Journal of Engineering Mechanics, 120(8), 1696–1717.

    Article  Google Scholar 

  • Hutchison, D., Kanade, T., & Kittler, J. (2012). Critical infrastructure protection: Information infrastructure models, analysis, and defense. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Jackson, D. (2017-last update). Cost of corrosion annually in the US Over $1.1 Trillion in 2016. Available: www.g2mtlabs.com/corrosion/cost-of-corrosion/.

  • Kadish, K., Smith, K., & Guilard, R., (Eds.). (2000). The porphyrin handbook. Elsevier.

    Google Scholar 

  • Khalil, G. (2004). Dual-luminophor pressure-sensitive paint I. Ratio of reference to sensor giving a small temperature dependency. Sensors and Actuators B: Chemical, 97(1), 13–21.

    Article  Google Scholar 

  • Khalil, G. E., Gouterman, M. P., & Green, E. (1989). Method for measuring oxygen concentration. Google Patents.

    Google Scholar 

  • Lakowicz, J. R. (2010). Principles of fluorescence spectroscopy (3th ed., corr. at 4. print). New York, NY: Springer.

    Google Scholar 

  • Laursen, P., Mergelas, B., Passaro, P., & Atherton, D. (2007). Inline assessment of transmission pipelines in the oil and gas and water sectors. Pipelines, 1–7.

    Google Scholar 

  • Liu, G., Zhang, P., Xile, Y., & Aibin, M. (2015). In situ monitoring of early cement hydration by X-ray computed tomography. Materials Research Innovations, 19, 776–778.

    Google Scholar 

  • Malvar, L. J., Cline, G. D., Rollings, R., Sherman, T. W., Greene, J., & Burke, D. (2002). Alkali-Silica reaction mitigation: State of the art and recommendations. Materials Journal, 99(5), 480–489.

    Google Scholar 

  • Martin, P. A. (2002). Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring. Chemical Society Reviews, 31(4), 21.

    Article  Google Scholar 

  • Milori, D., Galeti, H., Martin-Neto, L., Dieckow, J., Gonzalez-Perez, M., Bayer, C., et al. (2005). Organic matter study of whole soil samples using laser-induced fluorescence spectroscopy. Soil Science Society of America Journal, 70(1), 57.

    Article  Google Scholar 

  • Minsker, B., Baldwin, L., Crittenden, J., Kabbes, K., Karamouz, M., Lansey, K., et al. (2015). Progress and recommendations for advancing performance-based sustainable and resilient infrastructure design. Journal of Water Resources Planning and Management, 141(12).

    Article  Google Scholar 

  • Montemor, M. F., Alves, J. H., Simoes, A. M., Fernandes, J. C. S., Lourenco, Z., Costa, A. J. S., et al. (2006). Multiprobe chloride sensor for in situ monitoring of reinforced concrete structures. Cement & Concrete Composites, 28(3), 233–236.

    Article  Google Scholar 

  • Mostafavi, A., Abraham, D., & Delaurentis, D. (2014). Ex-ante policy analysis in civil infrastructure systems.  Journal of Computing in Civil Engineering, 28(5).

    Article  Google Scholar 

  • NACE Intl., FHWA, Koch, G. H., & CC Technology Laboratories. (2002). Corrosion cost and preventive strategies in the United States. Turner-Fairbank Highway Research Center.

    Google Scholar 

  • Norris, J. (1989). Current status and prospects for the use of optical fibres in chemical analysis. A review. Analyst, 114(11), 1359–1372.

    Article  Google Scholar 

  • Parfomak, P. W. (2013). Keeping America’s pipelines safe and secure: Key issues for congress. Federation of American Scientists.

    Google Scholar 

  • Poupard, O., Aït-Mokhtar, A., & Dumargue, P. (2004). Corrosion by chlorides in reinforced concrete: Determination of chloride concentration threshold by impedance spectroscopy. Cement and Concrete Research, 34(6), 991–1000.

    Article  Google Scholar 

  • Sarida, S., Helvaciolu-Yiit, D., Ozcan, M., Avcu, E., & Kizilta, G. (2016). Micro-computerized tomography analysis of cement voids and pull-out strength of glass fiber posts luted with self-adhesive and glass-ionomer cements in the root canal. Journal of Adhesion Science and Technology, 30(14), 1585–1595.

    Article  Google Scholar 

  • Seitz, W. R., & Sepaniak, M. J. (1988). Chemical sensors based on immobilized indicators and fiber optics. C R C Critical Reviews in Analytical Chemistry, 19(2), 135–173.

    Article  Google Scholar 

  • Settle, F. (1997). Handbook of instrumental techniques for analytical chemistry. Englewood Cliffs: Yourdon Press.

    Google Scholar 

  • Sidelev, A., & Ghandehari, M. (2017). Quantitative assessment of subsurface oxidation in coated materials. Journal of Performance of Constructed Facilities, 31(5).

    Article  Google Scholar 

  • Siesler, H. W. (2006). Near infrared spectroscopy. (1th ed., 3. repr. edn). Weinheim: Wiley-VCH.

    Google Scholar 

  • Sweet, I. R., Khalil, G., Wallen, A. R., Steedman, M., Schenkman, K. A., Reems, J. A., et al. (2002). Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technology & Therapeutics, 4(5), 661–672.

    Article  Google Scholar 

  • Torres-Luque, M., Bastidas-Arteaga, E., Schoefs, F., Sanchez-Silva, M., & Osma, J. F. (2014). Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges. Construction and Building Materials, 68, 68–81.

    Article  Google Scholar 

  • Wang, X., & Wolfbeis, O. S. (2013). Fiber-optic chemical sensors and biosensors (2008–2012). Analytical Chemistry, 85(2), 487.

    Article  Google Scholar 

  • Wang, X., & Wolfbeis, O. S. (2014). Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chemical Society Reviews, 43(10), 3666–3761.

    Article  Google Scholar 

  • Wlodarczyk, M. T., Vickers, D. J., & Kozaitis, S. P. (1987). Evanescent field spectroscopy with optical fibers for chemical sensing. Cambridge Symposium Fiber/LASE 1986, 18–26 AUGUST 1986, SPIE. (pp. 192–197).

    Google Scholar 

  • Wolfbeis, O. (2000). Fiber-optic chemical sensors and biosensors. Analytical Chemistry, 72(12), 81.

    Article  Google Scholar 

  • Wolfbeis, O. S. (2005). Materials for fluorescence-based optical chemical sensors. Journal of Materials Chemistry, 15(27–28), 2657–2669.

    Article  Google Scholar 

  • Zhang, B., Chen, J., & Jiao, M. (2015). Determination of chloride salt solution by NIR spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 35(7), 1840–1843.

    Google Scholar 

  • Zimmerman, R. (2004). Decision-making and the vulnerability of interdependent critical infrastructure. In 2004 IEEE International Conference on Systems, Man and Cybernetics, SMC 2004, October 10, 2004–October 13, 2004 (pp. 4059–4063). Institute of Electrical and Electronics Engineers Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Ghandehari .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghandehari, M. (2018). Optical Phenomenology for Materials Health Monitoring. In: Optical Phenomenology and Applications . Smart Sensors, Measurement and Instrumentation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-70715-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70715-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70714-3

  • Online ISBN: 978-3-319-70715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics