Skip to main content

A Hyper Heuristic Localization Based Cloned Node Detection Technique Using GSA Based Simulated Annealing in Sensor Networks

  • Chapter
  • First Online:

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 14 ))

Abstract

Due to inadequate energy resources, data aggregation from multiple sensors in Wireless Sensor Networks (WSN) is typically accomplished by clustering. But such data aggregation is recognized to be highly susceptible to clone attacks owing to the unattended nature of the network. Thus, ascertaining trustiness of the sensor nodes is crucial for WSN. Though numerous methods for cloned attack node isolation are provided in recent years, energy efficiency is the most significant issues to be handled. In this work, a Residual Energy and GSA based Simulated Annealing (RE-GSASA) for detecting and isolating the cloned attack node in WSN is given. Residual Energy-based Data Aggregation in WSN initially uses residual energy because the basis to perform aggregation technique with the sensor node possessing the maximum residual energy as the Cluster Head (CH). Next, Location-based Cloned attack on cluster nodes is given to enhance the clone detection probability rate. Here, the location and residual energy is taken into account to identify the presence of cloned attack nodes within the network. Finally, Gravitational Search Algorithm with global search ability is investigated to identify the cloned attack nodes and performs isolation through local optimal simulated annealing model. Simulation results demonstrate that RE-GSASA provides optimized energy consumption and improves cloned attack detection probability by minimizing the cloned attack detection time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singh, S.K., Singh, M.P., Singh, D.K.: Routing protocols in wireless sensor networks—a survey. Int. J. Comput. Sci. Eng. Surv. (IJCSES) 1(2), 63–83 (2010)

    Article  Google Scholar 

  2. Islam, M.M., Hassan, M.M., Lee, G.-W., Huh, E.-N.: A survey on virtualization of wireless sensor networks. Sensors (Open Access Journal), 2176–2207

    Google Scholar 

  3. Sonule, M.G., Nikam, S.: Role of sensor virtualization in wireless sensor networks. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(1), 699–703 (2014)

    Google Scholar 

  4. Khera, S., Mehla, N., Kaur, N.: Applications and challenges in wireless sensor networks. Int. J. Adv. Res. Comput. Commun. Eng. 5(6), 448–451 (2016)

    Google Scholar 

  5. Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.-P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1–24 (2012)

    Google Scholar 

  6. Khan, W.Z., Aalsalem, M.Y., Saad, N.M.: Distributed clone detection in static wireless sensor networks: random walk with network division. PLoS ONE 10(5), 1–22 (2015)

    Google Scholar 

  7. Cho, K., Lee, D.H.: Low-priced and efficient replica detection framework for wireless sensor networks. Peer-to-Peer Netw. Appl. 7(4), 743–749 (2014). Springer

    Article  Google Scholar 

  8. Maheswari, P.U., Kumar, P.G.: Dynamic detection and prevention of clone attack in wireless sensor networks. Wirel. Pers. Commun. 1–12 (2016). Springer

    Google Scholar 

  9. Bonaci, T., Lee, P., Bushnell, L., Poovendran, R.: A convex optimization approach for clone detection in wireless sensor networks. Pervasive Mob. Comput. 9, 528–545 (2013). Elsevier

    Google Scholar 

  10. Bu, K., Xu, M., Liu, X., Luo, J., Zhang, S., Weng, M.: Deterministic detection of cloning attacks for anonymous RFID systems. IEEE Trans. Ind. Inform. 11(6), 1255–1266 (2015)

    Google Scholar 

  11. Dong, M., Ota, K., Yang, L.T., Liu, A., Guo, M.: LSCD: a low-storage clone detection protocol for cyber-physical systems. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 35(5), 712–723

    Google Scholar 

  12. Li, Z., Gong, G.: On the node clone detection in wireless sensor networks. IEEE/ACM Trans. Netw. 21(6), 1799–1811 (2013)

    Article  Google Scholar 

  13. Bonaci, T., Lee, P., Bushnell, L., Poovendran, R.: Distributed clone detection in wireless sensor networks: an optimization approach. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, pp. 1–6 (2011)

    Google Scholar 

  14. Zheng, Z., Liu, A., Cai, L.X., Chen, Z., Shen, X.S.: Energy and memory efficient clone detection in wireless sensor networks. IEEE Trans. Mob. Comput. 15(5), 1130–1143 (2016)

    Google Scholar 

  15. Wen, H., Luo, J., Zhou, L.: Lightweight and effective detection scheme for node clone attack in wireless sensor networks. IET Wirel. Sens. Syst. 1(3), 137–143 (2011)

    Article  Google Scholar 

  16. Yu, C.-M., Lu, C.-S., Kuo, S.-Y.: Compressed sensing-based clone identification in sensor networks. IEEE Trans. Wireless Commun. 15(4), 3071–3084 (2016)

    Article  Google Scholar 

  17. Mishra, A.K., Turuk, A.K.: A zone-based node replica detection scheme for wireless sensor networks. Wirel. Pers. Commun. 69(2), 601–621 (2013). Springer

    Article  Google Scholar 

  18. Mishra, A.K., Turuk, A.K.: Residual energy-based replica detection scheme for mobile wireless sensor networks. J. Secur. Commun. Netw. 8(4), 637–648 (2015)

    Article  Google Scholar 

  19. Mishra, A.K., Turuk, A.K.: Node coloring based replica detection technique in wireless sensor networks. Wirel. Netw. 20(8), 2419–2435 (2014). Springer

    Article  Google Scholar 

  20. Zhu, B., Setia, S., Jajodia, S., Roy, S., Wang, L.: Localized multicast: efficient and distributed replica detection in large-scale sensor networks. IEEE Trans. Mob. Comput. 9(7), 913–926 (2010)

    Article  Google Scholar 

  21. Chaudhari, H.C., Kadam, L.U.: Wireless sensor networks: security, attacks and challenges. Int. J. Netw. 1(1), 4–16 (2011)

    Google Scholar 

  22. Deore, M.R., Patil, R.V.: A review: detection of clones in wireless sensor network. Int. J. Comput. Sci. 6(2), 316–323 (2015)

    Google Scholar 

  23. Zheng, Z., Liu, A., Cai, L.X., Chen, Z., Shen, X.S.: ERCD: an energy-efficient clone detection protocol in WSNs, In: Proceedings of IEEE INFOCOM (2013)

    Google Scholar 

  24. Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M.L., Sangaiah, A.K.: A robust time synchronization scheme for industrial internet of things. IEEE Trans. Industr. Inf. (2017). https://doi.org/10.1109/TII.2017.2738842

    Google Scholar 

  25. Kumar, A., Khoslay, A., Sainiz, J.S., Singh, S.: Meta-Heuristic range based node localization algorithm for wireless sensor networks, pp. 1–7. IEEE Conference Publications (2012)

    Google Scholar 

  26. Karuppiah, A.B., Dalfiah, J., Yuvashri, K., Rajaram, S.: An improvised hierarchical black hole detection algorithm in wireless sensor networks. In: International Conference on Innovation Information in Computing Technologies (ICIICT), pp. 1–7 (2015)

    Google Scholar 

  27. Lal, C., Shrivastava, A.: An energy preserving detection mechanism for blackhole attack in wireless sensor networks. Int. J. Comput. Appl. 115(16), 32–37 (2015)

    Google Scholar 

  28. Maheswari, P.U., Thenmozhi, L., Ganeshkumar, P.: Distributed detection of clone attacks in wireless sensor networks using RED-ANT algorithm. J. Comput. Appl. (JCA) 6(3), 43–46 (2013)

    Google Scholar 

  29. Znaidi, W., Minier, M., Ubéda, S.: Hierarchical node replication attacks detection in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2013, 1–12 (2013). Hindawi Publishing Corporation

    Google Scholar 

  30. Zhou, Y., Huang, Z., Wang, J., Huang, R., Yu, D.: An energy-efficient random verification protocol for the detection of node clone attacks in wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 163, 1–12 (2014). Springer

    Google Scholar 

  31. Ozdemir, S., Çam, H.: Integration of false data detection with data aggregation and confidential transmission in wireless sensor networks. IEEE/ACM Trans. Netw. 18(3), 1–14 (2010)

    Article  Google Scholar 

  32. Chen, C.-M., Lin, Y.-H., Lin, Y.-C., Sun, H.-M.: RCDA: recoverable concealed data aggregation for data integrity in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(4), 727–734 (2012)

    Article  Google Scholar 

  33. Zeng, Y., Cao, J., Zhang, S., Guo, S., Xie, L.: Random-walk based approach to detect clone attacks in wireless sensor networks. IEEE J. Sel. Areas Commun. 28(5), 677–691 (2010)

    Article  Google Scholar 

  34. Hidoussi, F., Toral-Cruz, H., Boubiche, D.E., Lakhtaria, K., Mihovska, A., Voznak, M.: Centralized IDS based on misuse detection for cluster-based wireless sensors networks. Wirel. Pers. Commun. 85(1), 207–224 (2015). Springer

    Google Scholar 

  35. Shaukat, H.R., Hashim, F., Sali, A., Abdul Rasid, M.F.: Node replication attacks in mobile wireless sensor network: a survey. Int. J. Distrib. Sens. Netw. 8, 1–15 (2014). Hindawi Publishing Corporation

    Google Scholar 

  36. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248. Elsevier

    Google Scholar 

  37. Tong, C.: Gravitational search algorithm based on simulated annealing. J. Convergence Inf. Technol. (JCIT) 9(2), 231–237 (2014)

    Google Scholar 

  38. Ho, J.-W., Wright, M., Das, S.K.: Fast detection of mobile replica node attacks in wireless sensor networks using sequential hypothesis testing. IEEE Trans. Mob. Comput. 10(6), 767–782 (2011)

    Article  Google Scholar 

  39. Dhanaraj, R.K., Shanmugam, A., Palanisamy, C., Natarajan, A.M.: Optimal clone attack detection model using an energy-efficient GSA based simulated annealing in wireless sensor networks. Asian J. Res. Soc. Sci. Hum. 6(11), 201 (2016)

    Google Scholar 

  40. Huang, D.-J., Teng, W.-C.: A defense against clock skew replication attacks in wireless sensor networks. J. Netw. Comput. Appl. 39, 26–37 (2014). Elsevier

    Article  Google Scholar 

  41. Conti, M., Di Pietro, R., Spognardi, A.: Clone wars: distributed detection of clone attacks in mobile WSNs. J. Comput. Syst. Sci. 80(3), 654–669 (2014). Elsevier

    Article  MATH  Google Scholar 

  42. Taylor, V.F., Fokum, D.T.: Mitigating black hole attacks in wireless sensor networks using node-resident expert systems. In: Wireless Telecommunications Symposium (WTS), pp. 1–7 (2014)

    Google Scholar 

  43. Vasserman, E.Y., Hopper, N.: Vampire attacks: draining life from wireless ad-hoc sensor networks. IEEE Trans. Mob. Comput. 12(2), 318–332 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Rajesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajesh Kumar, D., Shanmugam, A. (2018). A Hyper Heuristic Localization Based Cloned Node Detection Technique Using GSA Based Simulated Annealing in Sensor Networks. In: Sangaiah, A., Thangavelu, A., Meenakshi Sundaram, V. (eds) Cognitive Computing for Big Data Systems Over IoT. Lecture Notes on Data Engineering and Communications Technologies, vol 14 . Springer, Cham. https://doi.org/10.1007/978-3-319-70688-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70688-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70687-0

  • Online ISBN: 978-3-319-70688-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics