Skip to main content

Cardiac Cell Culture Microtechnologies Based on Stem Cells

  • Chapter
  • First Online:
Book cover Cardiac Cell Culture Technologies

Abstract

Stem cells (SCs) are the main source of biological material used in cell therapy and tissue engineering . Additionally, these cells are being investigated as a potential therapy technique for cardiovascular diseases (CVDs) and heart regeneration . To improve the investigation of SC proliferation and maturation, the Lab-on-a-Chip systems are being developed. There are many reports, which have proven that such microsystems have been successfully used for SC differentiation into different cell lineages. In this chapter, we present Heart-on-a-chip systems based on stem cells —the microsystems utilized for SC differentiation into cardiomyocytes (CMs). Various types of SC differentiation performed in Lab-on-a-chip systems are presented at the beginning of this chapter. Next, biochemical, physical and mechanical stimulations are presented as techniques to perform cardiogenesis. Other promising methods, especially the use of graphene and their other forms, which could be used for cardiac differentiation, are presented at the end of this chapter. Finally, we summarize the research focused on heart regeneration using the Lab-on-a-chip systems , and we outline future perspectives for microsystem usage for SC differentiation into CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamein AM, Wolvetag EJ, Ovchinnikov DA, Stephens S, Sanders K, Warnke PH (2015) Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency. J Tissue Eng Regen Med 9:1078–1083

    Article  Google Scholar 

  • Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959

    Article  Google Scholar 

  • Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S (2010) Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 16:1417–1426

    Article  Google Scholar 

  • Bergström G, Christoffersson J, Schwanke K, Zweigerdt R, Mandenius CF (2015) Stem cell derived in vivo-like human cardiac bodies in a microfluidic device for toxicity testing by beating frequency imaging. Lab Chip 15:3242–3249

    Article  Google Scholar 

  • Bhuthalingam R, Lim PQ, Irvine SA, Agrawal A, Mhaisalkar PS, An J, Chua CK, Venkatraman S (2015) A novel 3D printing method for cell alignment and differentiation. Int J Bioprinting 1:57–65

    Google Scholar 

  • Bianco A, Di Federico E, Moscatelli I, Camaioni A, Armentano I, Campagnolo L, Dottori M, Kenny JM, Siracusa G, Gusmano G (2009) Electrospun poly(e-prolactone)/Ca-deficient hydroxyapatite nanohybrids: microstructure, mechanical properties and cell response by murine embryonic stem cells. Mat Sci Eng C 29:2063–2071

    Article  Google Scholar 

  • Bitounis D, Ali-Boucetta H, Hong BH, Min D-H, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Funct Mater 25:2258–2268

    Article  Google Scholar 

  • Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D (2016) A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea. Front Physiol 7: 319_1–319_12

    Google Scholar 

  • Charlier JC, Eklund PC, Zhu J, Ferrari AC (2008) Electron and phonon properties of graphene: their relationship with carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Topics in applied physics, vol 111. Springer: Berlin, Heidelberg, p 673–709

    Google Scholar 

  • Chen MQ, Xie X, Wilson KD, Sun N, Wu JC, Giovangrandi L, Kovacs GT (2009) Current-controlled electrical point-source stimulation of embryonic stem cells. Cell Mol Bioeng 2:625–635

    Article  Google Scholar 

  • Cheng J, Ding Q, Wang J, Deng L, Yang L, Tao L, Lei H, Lu S (2016) 5-azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cell into cardiomyocytes. Nanoscale 8:2011–2021

    Article  Google Scholar 

  • Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K (2009) Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A 15:1373–1380

    Article  Google Scholar 

  • Dimarakis I, Levicar N, Nihoyannopoulos P, Hbib NA, Gordon MY (2006) In vitro stem cell differentiation into cardiomyocytes: Part 1. Culture medium and growth factors. JCRR 1:107–114

    Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  Google Scholar 

  • Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotech 35:118–126

    Article  Google Scholar 

  • Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliver Rev 69:254–269

    Article  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  Google Scholar 

  • Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253

    Article  Google Scholar 

  • Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7:710–719

    Article  Google Scholar 

  • Flaim CJ, Teng D, Chien S, Bhatia SN (2008) Combinatorial signalling microenvironments for studying stem cell fate. Stem Cell Dev 17:29–39

    Article  Google Scholar 

  • Geuss LR, Wu DC, Ramamoorthy D, Alford CD, Suggs LJ (2014) Paramagnetic beads and magnetically mediated strain enhance cardiomyogenesis in mouse embryoid bodies. PLoS ONE 9:1–20

    Article  Google Scholar 

  • Ghafar-Zadeh E, Waldeisen JR, Le LP (2011) Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip 11:3031–3048

    Article  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Nematollahi M, Karbalaie K, Ramakrishna S, Nasr-Esfahani MH (2014) Embryonic stem cells differentiation to cardiomyocytes on nanostructured scaffolds for myocardial tissue regeneration. Int J Polym Mater 63:240–245

    Article  Google Scholar 

  • Ghiaseddin A, Pouri H, Soleimani M, Vasheghani-Farahani E, Ahmadi Tafti H, Hashemi-Najafabadi S (2017) Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study. Biochem Biophys Res Commun 484:225–230

    Article  Google Scholar 

  • Goβmann M, Frotscher R, Linder P, Neumann S, Bayer R, Epple M, Staat M, (Temiz) Artmann A, Artmann GM (2016) Mechano-pharmacological characterisation of cardiomyocytes derived from human induced pluripotent stem cells. Cell Physiol Biochem 38:1182–1198

    Google Scholar 

  • Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtje W, Chen CS (2009) Control stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26

    Article  Google Scholar 

  • Gupta K, Kim D-H, Ellison D, Smith C, Kundu A, Tuan J, Suh KY, Levchenko A (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019–2031

    Article  Google Scholar 

  • Gwak S-J, Bhang SH, Kim I-K, Kim S-S, Cho S-W, Jeon O, Yoo KJ, Putnam AJ, Kim B-S (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29:844–856

    Article  Google Scholar 

  • Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M (2011) The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials 32:7363–7374

    Article  Google Scholar 

  • Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygiu RE, MacLellan WR (2008) Three-dimentional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29:2907–2914

    Article  Google Scholar 

  • Higuchi A, Kumar SS, Ling QD, Alarfaj AA, Munusamy MA, Murugan K, Hsu S-T, Benelli G, Umezawa A (2017) Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Prog Polym Sci 65:83–126

    Article  Google Scholar 

  • Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:644–654

    Article  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Huang A, Sun D, Jcobson A, Carroll MA, Falck JR, Kaley G (2005) Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarisation of arteriolar smooth muscle. Circ Res 96:376–383

    Article  Google Scholar 

  • Huang Y, Jia X, Bai X, Gong X, Fan Y (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41:497–505

    Article  Google Scholar 

  • Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60:199–214

    Article  Google Scholar 

  • Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81

    Article  Google Scholar 

  • Jenkins MW, Duke AR, Gu S, Chiel HJ, Fujioka H, Watanabe M, Jansen ED, Rollins AM (2010) Optical pacing of the embryonic heart. Nat Photonics 4:623–626

    Article  Google Scholar 

  • Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD (2014) Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic system. Integr Biol 6:555–563

    Article  Google Scholar 

  • Ju X, Li D, Gao N, Shi Q, Hou H (2008) Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Biotechnology 3:383–391

    Google Scholar 

  • Kang E, Choi YY, Jun Y, Chung BG, Lee SH (2010) Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10:2651–2654

    Article  Google Scholar 

  • Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K (2004) Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenic protein 2. Circ J 68:691–702

    Article  Google Scholar 

  • Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:29–37

    Article  Google Scholar 

  • Kim KM, Choi YJ, Hwang J-H, Kim AR, Cho HJ, Hwang ES, Park JY, Lee S-H, Hong J-H (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS ONE 9:e92427-1–e92427-9

    Google Scholar 

  • Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, Tanaka M, Weissman IL, Robbins RC (2004) Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22:1239–1245

    Article  Google Scholar 

  • Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34:2017–2023

    Article  Google Scholar 

  • Kujala K, Ahola A, Hyttinen J, Kerkela E, Aalto-Setala K (2012) Electrical field stimulation with a novel platform: effect on cardiomyocyte gene expression but not on orientation. Int J Biomed Sci 8:109–120

    Google Scholar 

  • Kumar D, Sun B (2005) Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun 332:135–141

    Article  Google Scholar 

  • Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103:16095–16100

    Article  Google Scholar 

  • Lee JM, Kim J, Kang E, Lee SH, Chung BG (2011a) An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 32:3133–3137

    Article  Google Scholar 

  • Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011b) Origin enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334

    Article  Google Scholar 

  • Lee T-J, Park S, Bhang SH, Yoon J-K, Jo I, Jeong G-J, Hong BH, Kim B-S (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Bioph Res Co 452:174–180

    Article  Google Scholar 

  • Li Q, Cheung WH, Chow KL, Ellis-Behnke RG, Chau Y (2012) Factorial analysis of adaptable properties of self-assembling peptide matrix on cellular proliferation and neuronal differentiation of pluripotent embryonic carcinoma. Nanomedicine 8:748–756

    Article  Google Scholar 

  • Liu L, Yoshioka M, Nakajima M, Ogasawara A, Liu J, Hasegawa K, Li S, Zou J, Nakatsuji N, Kamei K, Chen Y (2014) Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 35:6259–6267

    Article  Google Scholar 

  • Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138

    Article  Google Scholar 

  • Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on grapheme oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7:6331–6339

    Article  Google Scholar 

  • Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21:3255–3268

    Article  Google Scholar 

  • Ma Z, Liu Q, Liu H, Yang H, Yun JX, Eisenberg C, Borg TK, Xu M, Gao BZ (2012) Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 12:566–573

    Article  Google Scholar 

  • Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23

    Article  Google Scholar 

  • Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissue. Lab Chip 16:599–610

    Article  Google Scholar 

  • Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:1–7

    Article  Google Scholar 

  • Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy KE (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 15:203–213

    Article  Google Scholar 

  • Matteini P, Tatini F, Cavigli L, Ottaviano S, Ghini G, Pini R (2014) Graphene as a photothermal switch for controlled drug release. Nanoscale 6:7947–7953

    Article  Google Scholar 

  • Metallo CM, Vodyanik MA, de Pablo JJ, Slukvin II, Palecek SP (2008) The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng 100:830–837

    Article  Google Scholar 

  • Miyamoto D, Ohno K, Hara T, Koga H, Nakazawa K (2016) Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures. J Biosci Bioeng 121:105–110

    Article  Google Scholar 

  • Mohr JC, de Pablo JJ, Palecek SP (2006) 3-D microwell culture of human embryonic stem cells. Biomaterials 27:6032–6042

    Article  Google Scholar 

  • Moya M, Tran D, George SC (2013) An integrated in vitro model of perfused tumor and cardiac tissue. Stem Cell Res Ther 4:S15-1–S15-6

    Google Scholar 

  • Mummery CI, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358

    Article  Google Scholar 

  • Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557

    Article  Google Scholar 

  • Myers FB, Zarins CK, Abilez OJ, Lee LP (2013) Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte cluster. Lab Chip 13:220–228

    Article  Google Scholar 

  • Ni XF, Crozatier C, Sensebe L, Langonne A, Wang L, Fan Y, He PG, Chen Y (2008) On-chip differentiation of human mesenchymal stem cells into adipocytes. Microelectron Eng 85:1330–1333

    Article  Google Scholar 

  • Oberti S, Möller D, Neild A, Dual J, Beyeler F, Nelson BJ, Gutmann S (2010) Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics 50:247–257

    Article  Google Scholar 

  • Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:356–368

    Article  Google Scholar 

  • Park JY, Takayama S, Lee S-H (2010) Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integr Biol 2:229–240

    Article  Google Scholar 

  • Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD (2015) Controlled electromechanical cell stimulation on-a-chip. Sci Rep 5:1–12

    Article  Google Scholar 

  • Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26:4744–4755

    Article  Google Scholar 

  • Pek YS, Wan AC, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391

    Article  Google Scholar 

  • Perez RA, Choi S-J, Han C-M, Kim J, Shim H, Leong KW, Kim H-W (2016) Biomaterials control of pluripotent stem cell fate for regenerative medicine. Prog Mater Sci 82:234–293

    Article  Google Scholar 

  • Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32

    Article  Google Scholar 

  • Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sens Actuat B Chem 171–172:62–76

    Article  Google Scholar 

  • Rao C, Prodromakis T, Kolker L, Chaudhry UA, Trantidou T, Sridhar A, Weekes C, Camelliti P, Harding SE, Darzi A, Yacoub MH, Athanasiou T, Terracciano CM (2013) The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34:2399–2411

    Article  Google Scholar 

  • Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733

    Article  Google Scholar 

  • Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE (2015) Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33:2148–2157

    Article  Google Scholar 

  • Salic MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC (2014) Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 35:4454–4464

    Article  Google Scholar 

  • Schaaf S, Schibamiya A, Mewe M, Eder A, Stöhr A, Hirt MN, Rau T, ZimmermannW-H, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6:e26397-1–e26397-11

    Google Scholar 

  • Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  Google Scholar 

  • Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619

    Article  Google Scholar 

  • Shimko VF, Claycomb WC (2008) Effect of mechanical loading on three-dimentional cultures of embryonic stem cell-derived cardiomyocytes. J Mol Med 75:901–920

    Google Scholar 

  • Silvestre J-S, Menasché P (2015) The evolution of the stem theory for heart failure. EBioMedicine 2:1871–1879

    Article  Google Scholar 

  • Simmons CS, Petzold BC, Pruitt BL (2012) Microsystems for biomimetic stimulation of cardiac cells. Lab Chip 12:3235–3248

    Article  Google Scholar 

  • Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535

    Article  Google Scholar 

  • Solanki A, Shah S, Memoli KA, Park SY, Hong S, Lee KB (2010) Controlling differentiation of neural stem cells using extracellular matrix protein patterns. Small 6:2509–2513

    Article  Google Scholar 

  • Stoppel WL, Kaplan DL, Black LD III (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliver Rev 96:135–155

    Article  Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  Google Scholar 

  • Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92

    Article  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  Google Scholar 

  • Tanaka Y, Fujita H (2015) Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sens Actuat B Chem 210:267–272

    Article  Google Scholar 

  • Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Navakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173

    Article  Google Scholar 

  • Tandon N, Marsano A, Maidhof R, Numata K, Montouri-Sorrentino C et al (2010) Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 10:692–700

    Article  Google Scholar 

  • Thavandiran N, Dubois N, Mikryukov A, Massé S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissue. Proc Natl Acad Sci 110:E4698–E4707

    Article  Google Scholar 

  • Toh YC, Voldman J (2010) Multiplex microfluidic perfusion identifies shear stress mechanosensing mediators in mouse embryonic stem cells. In: 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherlands, 3–7 October 2010

    Google Scholar 

  • Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng C 75:305–316

    Article  Google Scholar 

  • Tzatzalos E, Abilez OJ, Shukla P, Wu JC (2016) Engineered heart tissue and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliver Rev 96:234–244

    Article  Google Scholar 

  • Uzel SGM, Pavesi A, Kamm RD (2014) Microfabrication and microfluidics for muscle tissue models. Prog Biophys Mol Biol 115:279–293

    Article  Google Scholar 

  • Villa-Diaz LG, Torisawa Y, Uchida T, Ding J, Nogueira-de-Souza NC, O’Shea KS, Takayama S, Smith GD (2009) Microfluidic culture of single human embryonic stem cell colonies. Lab Chip 9:1749–1755

    Article  Google Scholar 

  • Wan CR, Chung S, Kamm RD (2011) Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 39:1840–1847

    Article  Google Scholar 

  • Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241

    Article  Google Scholar 

  • Wang B, Jedlicka S, Cheng X (2014) Maintenance and neuronal cell differentiation of neural stem cells c17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS ONE 9:e109815-1–e109815-15

    Google Scholar 

  • Wu CC, Chao YC, Chen CN, Chien S, Chen YC, Chien CC, Chiu JJ, Yen BL (2008) Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech 41:813–821

    Article  Google Scholar 

  • Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimic native cardiac bundle. Lab Chip 14:869–882

    Article  Google Scholar 

  • Yang H, Ma Z (2012) Microsystem for stem cell-based cardiovascular research. BioNano Sci 2:305–315

    Article  Google Scholar 

  • Yang K, Park H-J, Han S, Lee J, Ko E, Kim J, Lee JS, Yu JH, Song KY, Cheong E, Cho SR, Chung S, Cho SW (2015) Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials 63:177–188

    Article  Google Scholar 

  • Yang H, Borg TK, Ma Z, Xu M, Wetzel G, Saraf LV, Markwald R, Runyan RB, Gao BZ (2016) Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 4:015012

    Article  Google Scholar 

  • Yang SH, Choi JW, Huh D, Jo HA, Kim S, Lim CS, Lee JC, Kim HC, Kwon HM, Jeong CW, Kwak C, Joo KW, Kim YS, Kim DK (2017) Roles of fluid shear stress and retinoic acid in the differentiation of primary cultured human podocytes. Exp Cell Res 354:48–56

    Article  Google Scholar 

  • Ye Z, Zhou Y, Cai H, Tan W (2011) Myocardial regeneration: roles of stem cells and hydrogels. Adv Drug Deliver Rev 63:688–697

    Article  Google Scholar 

  • Yoon HH, Bhang SH, Kim T, Yu T, Hyeon T, Kim B-S (2014) Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv Funct Mater 24:6455–6464

    Article  Google Scholar 

  • Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020

    Article  Google Scholar 

  • Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. Bionanoscience 2:277–286

    Article  Google Scholar 

  • Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chip: advances and trends. Biotechnol Adv 25:483–514

    Article  Google Scholar 

  • Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114

    Article  Google Scholar 

  • Zhou J, Zhang Y, Lin Q, Liu Z, Wang H, Duan C, Wang Y, Hao T, Wu K, Wang C (2010) Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J Genet Genomics 37:451–460

    Article  Google Scholar 

  • Zhou Y, Basu S, Laue E, Seshia AA (2016) Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron 81:249–258

    Article  Google Scholar 

  • Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infracted rat heart. Nat Med 12:452–458

    Article  Google Scholar 

  • Zuppinger C (2016) 3D culture for cardiac cells. Biochim Biophys Acta 1863:1873–1881

    Article  Google Scholar 

Download references

Acknowledgements

This work was realized with the frame of project LIDER No. LIDER/026/573/L-4/12/NCBR/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elzbieta Jastrzebska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobuszewska, A., Sokolowska, P., Jastrzebska, E. (2018). Cardiac Cell Culture Microtechnologies Based on Stem Cells. In: Brzozka, Z., Jastrzebska, E. (eds) Cardiac Cell Culture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70685-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70685-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70684-9

  • Online ISBN: 978-3-319-70685-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics