Skip to main content

Biological Bases of Cardiac Function and the Pro-regenerative Potential of Stem Cells in the Treatment of Myocardial Disorder

  • 743 Accesses

Abstract

The heart is one of the most important organs and performs a principal task in the organism providing a blood through the vascular bed. Since cardiovascular diseases (CVD) are known to be a main cause of mortality in humans, there is a huge interest in development of novel therapies for myocardial dysfunction. There is number of proposed approaches; however, a big hope has been placed in stem cell therapies. The best possible candidates among stem cells for cellular therapies of the heart are mesenchymal stem cells (MSC), cardiac cell progenitors (CPC), embryonic stem cells (ESC), and generations of induced pluripotent stem cells (iPSC). iPSCs are potentially helpful, despite their pluripotent induction, low propagation ability, oncogenomic instability, teratoma generation, etc. Adaptation of protocols are further required to improve stem cells resistance to pathological environment, e.g., hypoxic conditions in postinfarcted heart and to enhance their retention. Cooperation between stem cell therapy and gene transfer is presently more often tried in preclinical studies with promising view for prospective clinical trials. Supplementary substances (mostly anti-inflammatory and anti-apoptotic factors) have been considered to maintain stem cell viability which has been examined at in vivo animal models with optimistic results. Combination of all therapies with nanotechnology both for effective stem cell visualization as well as ensuring cell resistance to apoptosis (supported with scaffolds ) appear to be necessary for next generation protocols of stem cell interventions. The whole organ (heart) reconstruction attempts have also been described. In this section, we will summarize recent advances in therapy of the heart and methods that could be used to enhance its efficacy in clinical application.

Keywords

  • Heart regeneration
  • Stem cells
  • Cellular therapies
  • Scaffolds
  • Tissue engineering
  • Whole heart reconstruction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70685-6_5
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-70685-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7

References

  • Albini A, Melchiori A, Garofalo A, Noonan DM, Basolo F, Taraboletti G, Chader GJ, Gavazzi R (1992) Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int J Cancer 52:234–240

    CrossRef  Google Scholar 

  • Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3 K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    CrossRef  Google Scholar 

  • Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    CrossRef  Google Scholar 

  • Baas T (2014) A big heart. SciBX 7:1–2

    Google Scholar 

  • Bao C, Guo J, Lin G, Hu M, Hu Z (2008) TNFR gene-modified mesenchymal stem cells attenuate inflammation and cardiac dysfunction following MI. Scand Cardiovasc J 42:56–62

    CrossRef  Google Scholar 

  • Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A (2016) Congestive heart failure cardiopoietic regenerative therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168

    CrossRef  Google Scholar 

  • Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068–14073

    CrossRef  Google Scholar 

  • Bearzi C, Gargioli C, Baci D, Fortunato O, Shapira-Schweitzer K, Kossover O, Latronico MV, Seliktar D, Condorelli G, Rizzi R (2014) PlGF–MMP9-engineered iPS cells supported on a PEG–fibrinogen hydrogel scaffold possesses an enhanced capacity to repair damaged myocardium. Cell Death Dis 5:e1053

    CrossRef  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CrossRef  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    CrossRef  Google Scholar 

  • Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    CrossRef  Google Scholar 

  • Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G (1999) Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589

    CrossRef  Google Scholar 

  • Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, Malik N, Zou J (2015) Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE 10:e0116032

    CrossRef  Google Scholar 

  • Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): One year follow-up. Cell Transplant 16:927–934

    CrossRef  Google Scholar 

  • Chakravarty T, Makkar RR, Ascheim DD, Traverse JH, Schatz R, DeMaria A, Francis GS, Povsic TJ, Smith RR, Lima JA, Pogoda JM, Marbán L, Henry TD (2017) ALLogeneic Heart Stem Cells to Achive Myocardial Regeneration (ALLSTAR) trial: rationale and design. Cell Transplant 26(2):205–214

    CrossRef  Google Scholar 

  • Climent AM, Sanz-Ruiz R, Fernández-Santos MA, Arranz AV, Fernández-Avilés F (2016) General Overview of the 13th TECAM Conference. Circ Res 119:409–413

    CrossRef  Google Scholar 

  • Cortes-Morichetti M, Frati G, Schussler O, Duong Van Huyen JP, Lauret E, Genovese JA, Carpentier AF, Chachques JC (2007) Association between a cell-seeded collagen matrix and cellular cardiomyoplasty for myocardial support and regeneration. Tissue Eng 13:2681–2687

    CrossRef  Google Scholar 

  • Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF (2012) Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33:3539–3547

    CrossRef  Google Scholar 

  • Dai W, Hale SL, Kay GL, Jyrala AJ, Kloner RA (2009) Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med 4:387–395

    CrossRef  Google Scholar 

  • Eng G, Lee BW, Protas L, Gagliardi M, Brown K, Kass RS, Keller G, Robinson RB, Vunjak-Novakovic G (2016) Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 7:1–10

    Google Scholar 

  • Eschenhagen T (2011) The beat goes on: human heart muscle from pluripotent stem cells. Circ Res 109:2–4

    CrossRef  Google Scholar 

  • Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    CrossRef  Google Scholar 

  • Fukuhara S, Tomita S, Nakatani T, Fujisato T, Ohtsu Y, Ishida M, Yutani C, Kitamura S (2005) Bone marrow cell-seeded biodegradable polymeric scaffold enhances angiogenesis and improves function of the infarcted heart. Circ J 69:850–857

    CrossRef  Google Scholar 

  • Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F, Forte E, Ionta V, Giuliani L, D’Emilia E, Frati G, Miraldi F, Pozzi D, Messina E, Grimaldi S, Giacomello A, Lisi A (2009) Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res 82:411–420

    CrossRef  Google Scholar 

  • Godier-Furnémont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang G, Hudson B, Homma S, Vunjak-Novakovic G (2011) Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci USA 108:7974–7979

    CrossRef  Google Scholar 

  • Gong X, Fan G, Wang W, Wang G (2014) Trimetazidine protects umbilical cord mesenchymal stem cells against hypoxia and serum deprivation induced apoptosis by activation of Akt. Cell Physiol Biochem 34:2245–2255

    CrossRef  Google Scholar 

  • Hagège AA, Marolleau JP, Vilquin JT, Alhéritière A, Peyrard S, Duboc D, Abergel E, Messas E, Mousseaux E, Schwartz K, Desnos M, Menasché P (2006) Skeletal myoblast transplantation in ischemic heart failure: Long- term follow-up of the first phase I cohort of patients. Circulation 114:108–113

    CrossRef  Google Scholar 

  • Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B, Ferreira-Martins J, Arranto C, D’Amario D, del Monte F, Urbanek K, D’Alessandro DA, Michler RE, Anversa P, Rota M et al (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123:1287–1296

    CrossRef  Google Scholar 

  • Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang JA, Wei L (2008) Transplantation of hypoxia- preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    CrossRef  Google Scholar 

  • Hua P, Tao J, Liu JY, Yang SR (2014) Cell transplantation into ischemic myocardium using mesenchymal stem cells transfected by vascular endothelial growth factor. Int J Clin Exp Pathol 7:7782–7788

    Google Scholar 

  • Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, Sun A, Ge J, Chen H (2014) Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res. Ther 5:22

    CrossRef  Google Scholar 

  • Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008a) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797

    CrossRef  Google Scholar 

  • Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008b) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    CrossRef  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    CrossRef  Google Scholar 

  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    CrossRef  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    CrossRef  Google Scholar 

  • Kim SW, Lee DW, Yu LH, Zhang HZ, Kim CE, Kim JM, Park TH, Cha KS, Seo SY, Roh MS, Lee KC, Jung JS, Kim MH (2012) Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res 95:495–506

    CrossRef  Google Scholar 

  • Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC (2005) Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112:173–177

    Google Scholar 

  • Kuppusamy KT, Jones DC, Sperber H, Madan A, Fischer KA, Rodriguez ML, Pabon L, Zhu WZ, Tulloch NL, Yang X, Sniadecki NJ, Laflamme MA, Ruzzo WL, Murry CE, Ruohola-Baker H (2015) Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci USA 112(21):E2785–E2794

    CrossRef  Google Scholar 

  • Kurazumi H, Kubo M, Ohshima M, Yamamoto Y, Takemoto Y, Suzuki R, Ikenaga S, Mikamo A, Udo K, Hamano K, Li TS (2011) The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS ONE 6:e28890

    CrossRef  Google Scholar 

  • Lee P, Klos M, Bollensdorff C, Hou L, Ewart P, Kamp TJ, Zhang J, Bizy A, Guerrero-Serna G, Kohl P, Jalife J, Herron TJ (2012) Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ Res 110:1556–1563

    CrossRef  Google Scholar 

  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:56–61

    CrossRef  Google Scholar 

  • Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    CrossRef  Google Scholar 

  • Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lützow K, Lendlein A, Stamm C, Li RK, Steinhoff G (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25:2118–2127

    CrossRef  Google Scholar 

  • Li TS, Cheng K, Malliaras K, Matsushita N, Sun B, Marbán L, Zhang Y, Marbán E (2011a) Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc Res 89:157–165

    CrossRef  Google Scholar 

  • Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011b) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol 106:849–864

    CrossRef  Google Scholar 

  • Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP (2012) Partitioning the heart: mechanisms of cardiac septation and valve development. Development 139:3277–3299

    CrossRef  Google Scholar 

  • Linke A, Müller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971

    CrossRef  Google Scholar 

  • Liu J, Hu Q, Wang Z, Xu C, Wang X, Gong G, Mansoor A, Lee J, Hou M, Zeng L, Zhang JR, Jerosch-Herold M, Guo T, Bache RJ, Zhang J (2004) Autologous stem cell transplantation for myocardial repair. Am J Physiol Heart Circ Physiol 287:501–511

    CrossRef  Google Scholar 

  • Liu XB, Chen H, Chen HQ, Zhu MF, Hu XY, Wang YP, Jiang Z, Xu YC, Xiang MX, Wang JA (2012) Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J Zhejiang Univ Sci B 13:616–623

    CrossRef  Google Scholar 

  • Liu XB, Wang JA, Ji XY, Yu SP, Wei L (2014) Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Res Ther 5:111

    CrossRef  Google Scholar 

  • Lu Y, Shansky J, Del Tatto M, Ferland P, Wang X, Vandenburgh H (2001) Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis. Circulation 104:594–599

    CrossRef  Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    CrossRef  Google Scholar 

  • Marsano A, Maidhof R, Wan LQ, Wang Y, Gao J, Tandon N, Vunjak-Novakovic G (2010) Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnol Prog 26:1382–1390

    CrossRef  Google Scholar 

  • Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, Marui A, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2012) Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 30:1196–1205

    CrossRef  Google Scholar 

  • Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li RK (2003) Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108:219–225

    CrossRef  Google Scholar 

  • Maureira P, Marie PY, Yu F, Poussier S, Liu Y, Groubatch F, Falanga A, Tran N (2012) Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J Biomed Sci 19:93

    CrossRef  Google Scholar 

  • Mazo M, Planat-Bénard V, Abizanda G, Pelacho B, Léobon B, Gavira JJ, Peñuelas I, Cemborain A, Pénicaud L, Laharrague P, Joffre C, Boisson M, Ecay M, Collantes M, Barba J, Casteilla L, Prósper F (2008) Tranplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarcion. Eur J Heart Fail 10:454–462

    CrossRef  Google Scholar 

  • Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagège AA (2008) The Myoblats Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast trnaplantation. Circulation 117:1189–1200

    CrossRef  Google Scholar 

  • Mendis S, Puska P, Norrving B (2011) Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization, Geneva

    Google Scholar 

  • Mihic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, Weisel RD, Keller G, Li RK (2014) The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 35:2798–2808

    CrossRef  Google Scholar 

  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    CrossRef  Google Scholar 

  • Miyagawa S, Sawa Y, Sakakida S, Taketani S, Kondoh H, Memon IA, Imanishi Y, Shimizu T, Okano T, Matsuda H (2005) Tissue cardiomyoplasty using bioengineerred contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation 80:1586–1595

    CrossRef  Google Scholar 

  • Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, Kawaguchi N, Teramoto N, Matsuura N, Iida H, Shimizu T, Okano T, Sawa Y (2010) Impaired myocardium regeneration with skeletal cell sheets-a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90:364–372

    CrossRef  Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    CrossRef  Google Scholar 

  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem 8:633–638

    Google Scholar 

  • Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W, Sussman MA (2013) Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res 113:1169–1179

    CrossRef  Google Scholar 

  • Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, Howard JP, Cole GD, Francis DP (2014) Discrepancies in autologous bone marrow stem cell trails and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis. BMJ 348:g2688

    CrossRef  Google Scholar 

  • Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    CrossRef  Google Scholar 

  • Onai Y, Suzuki J, Maejima Y, Haraguchi G, Muto S, Itai A, Isobe M (2007) Inhibition of NF- kappa B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol 292:530–538

    CrossRef  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    CrossRef  Google Scholar 

  • Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    CrossRef  Google Scholar 

  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142

    CrossRef  Google Scholar 

  • Ravichandran R, Venugopal JR, Mueller M, Sundarrajan S, Mukherjee S, Pliska D, Wintermantel E, Ramakrishna S (2013) Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adipose-derived stem cells. Nanomed. (Lond) 8:1985–1997

    CrossRef  Google Scholar 

  • Razban V, Lotfi AS, Soleimani M, Ahmadi H, Massumi M, Khajeh S, Ghaedi M, Arjmand S, Najavand S, Khoshdel A (2012) HIF-1α overexpression induces angiogenesis in mesenchymal stem cells. Biores Open Access 1:174–183

    CrossRef  Google Scholar 

  • Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    CrossRef  Google Scholar 

  • Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, Bedelbaeva K, McIntosh D, Dewilde A, Braunhut SJ, Badylak SF (2009) Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A 15:605–614

    CrossRef  Google Scholar 

  • Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmüller H, Müller R, Weber FE, Hubbell JA (2006) Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes part II: Biofunctional characteristics. Biomacromol 7:3019–3029

    CrossRef  Google Scholar 

  • Roquin A (2006) Wilhelm His Jr (1863–1934)—The man behind the bundle. Heart Rhythm 3:480–483

    CrossRef  Google Scholar 

  • Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE (2013) Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS ONE 8:e68451

    CrossRef  Google Scholar 

  • Schussler O, Chachques JC, Mesana TG, Suuronen EJ, Lecarpentier Y, Ruel M (2010) 3-dimensional structures to enhance cell therapy and engineer contractile tissue. Asian Cardiovasc Thorac Ann 18:188–198

    CrossRef  Google Scholar 

  • Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T (2008) Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation 118:145–152

    CrossRef  Google Scholar 

  • Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341:573–582

    CrossRef  Google Scholar 

  • Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24:2309–2316

    CrossRef  Google Scholar 

  • Shimizu T, Sekine H, Isoi Y, Yamato M, Kikuchi A, Okano T (2006) Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng 12:499–507

    CrossRef  Google Scholar 

  • Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzeźniczak J, Rozwadowska N, Kurpisz M (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardiual injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537

    CrossRef  Google Scholar 

  • Stancovski I, Baltimore D (1997) NF-kappaB activation: the I kappaB kinase revealed? Cell 91:299–302

    CrossRef  Google Scholar 

  • Stevens KR, Pabon L, Muskheli V, Murry CE (2009) Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A 15:1211–1222

    CrossRef  Google Scholar 

  • Stoppel WL, Gao AE, Greaney AM, Partlow BP, Bretherton RC, Kaplan DL, Black LD 3rd (2016) Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J Biomed Mater Res-Part A 104(12):3058–3072

    CrossRef  Google Scholar 

  • Stroorvogel W (2012) Functional transfer of microRNA by exosomes. Blood 119:646–648

    CrossRef  Google Scholar 

  • Sun CK, Zhen YY, Leu S, Tsai TH, Chang LT, Sheu JJ, Chen YL, Chua S, Chai HT, Lu HI, Chang HW, Lee FY, Yip HK (2014) Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction. Int J Cardiol 173:410–423

    CrossRef  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CrossRef  Google Scholar 

  • Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, Yamagishi M, Yaku H, Tabata Y, Matsubara H, Oh H (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52:1858–1865

    CrossRef  Google Scholar 

  • Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305

    CrossRef  Google Scholar 

  • Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59

    CrossRef  Google Scholar 

  • Vu DT, Martinez EC, Kofidis T (2012) Myocardial restoration: is it the cell or the architecture or both? Cardiol Res Pract 2012:240497

    Google Scholar 

  • Wang K, Zhao X, Kuang C, Qian D, Wang H, Jiang H, Deng M, Huang L (2012) Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3 K pathway. PLoS ONE 7:e43922

    CrossRef  Google Scholar 

  • Wang L, Pasha Z, Wang S, Li N, Feng Y, Lu G, Millard RW, Ashraf M (2013) Protein kinase G1 overexpression increases stem cell survival and cardiac function after myocardial infarction. PLoS ONE 8:e60087

    CrossRef  Google Scholar 

  • Wang H (2014) Small molecules enable cardiac reprograming of mouse fibroblast with a single factor. Oct4 Cell Rep March 13, 6(5):951–960

    Google Scholar 

  • Wang L, Gu H, Turrentine M, Wang M (2014) Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/ reperfusion. Surgery 156:243–252

    CrossRef  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    CrossRef  Google Scholar 

  • Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223

    CrossRef  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    CrossRef  Google Scholar 

  • Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127:997–1008

    CrossRef  Google Scholar 

  • Xu R, Chen J, Cong X, Hu S, Chen X (2008) Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3 K/Akt and ERK1/2. J Cell Biochem 103:256–269

    CrossRef  Google Scholar 

  • Yin Q, Jin P, Liu X, Wei H, Lin X, Chi C, Liu Y, Sun C, Wei Y (2011) SDF-1 inhibits hypoxia- and serum deprivation-induced apoptosis in mesenchymal stem cells through PI3 K/Akt and ERK1/2 signaling pathways. Mol Biol Rep 38:9–16

    CrossRef  Google Scholar 

  • Yin Q, Pei Z, Wang H, Zhao Y (2014) Cyclosporine A-nanoparticles enhance the therapeutic benefit of adipose tissue-derived stem cell transplantation in a swine myocardial infarction model. Int J Nanomedicine 9:17–26

    CrossRef  Google Scholar 

  • Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS ONE 8:e73304

    CrossRef  Google Scholar 

  • Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluropotent stem cells free of vectors and transgene sequences. Science 324:797–801

    CrossRef  Google Scholar 

  • Zeng H, Li L, Chen JX (2012) Overexpression of angiopoietin-1 increases CD133 +/c-kit + cells and reduces myocardial apoptosis in db/db mouse infarcted hearts. PLoS ONE 7:e35905

    CrossRef  Google Scholar 

  • Zhang Y, Li W, Ou L, Wang W, Delyagina E, Lux C, Sorg H, Riehemann K, Steinhoff G, Ma N (2012) Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS ONE 7:e39490

    CrossRef  Google Scholar 

  • Zhang Z, Li S, Cui M, Gao X, Sun D, Qin X, Narsinh K, Li C, Jia H, Li C, Han Y, Wang H, Cao F (2013) Rosuvastin enhances the therapeutic efficacy of adipose- derived mesenchymal stem cells for myocardial infarction via PI3 K/ Akt and MEK/ERK pathways. Basic Res Cardiol 108:333

    CrossRef  Google Scholar 

  • Zhang Y, Cao N, Huang Y, Spencer CI, Fu JD, Yu C, Liu K, Nie B, Xu T, Li K, Xu S, Bruneau BG, Srivastava D, Ding S (2016) Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem 18(3):368–381

    Google Scholar 

  • Zhu XY, Zhang XZ, Xu L, Zhong XY, Ding Q, Chen YX (2009) Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue. Biochem Biophys Res Commun 379:1084–1090

    CrossRef  Google Scholar 

  • Zimmermann WH, Schneiderbanger K, Schubert P et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    Google Scholar 

Download references

Acknowledgements

We should like to acknowledge a financial support from the following projects: National Centre for Research and Development, Poland; grant no. STRATEGMED1/233624/5/NCBR/2014, grant no. PBS3/A7/27/2015; National Science Centre, Poland; grant no. 2014/13/B/NZ3/04646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Kurpisz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bednarowicz, K.A., Kurpisz, M. (2018). Biological Bases of Cardiac Function and the Pro-regenerative Potential of Stem Cells in the Treatment of Myocardial Disorder. In: Brzozka, Z., Jastrzebska, E. (eds) Cardiac Cell Culture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70685-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70685-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70684-9

  • Online ISBN: 978-3-319-70685-6

  • eBook Packages: EngineeringEngineering (R0)