Skip to main content

The Standard Model of Particle Physics

  • Chapter
  • First Online:
Scalar Boson Decays to Tau Leptons

Part of the book series: Springer Theses ((Springer Theses))

  • 298 Accesses

Abstract

The standard model (SM) of particles physics (Burgess, Moore, The Standard Model, a Primer, Cambridge University Press, Cambridge, 2013, [1], Griffiths, Introduction to Elementary Particles, Wiley-VCH, Weinheim, 2008, [2], Glashow, Nucl Phys, 22:579–588 (1961), [3], Weinberg, Phys Rev Lett, 19:1264–1266 (1967), [4], Salam, Conf Proc, C680519:367–377 (1968), [5], Gunion et al. The Higgs Hunter’s Guide, Perseus Publishing, Cambridge, 1990, [6], Ramond, Journeys Beyond the Standard Model, Perseus Books, Cambridge, 1999, [7]) describes the elementary particles and their interactions at the most fundamental level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this thesis all masses and energies are expressed in natural units, where the speed of light and \(\hbar \) are taken as equal to 1.

  2. 2.

    Right-handed neutrinos, \(\nu _R\), are sometimes also considered.

  3. 3.

    Theories are usually defined as valid within certain thresholds. In quantum theories, because all particles can contribute to a process as virtual particles, all scales contribute, even to low-energy processes. A cut-off is often needed in the calculation. If the cut-off disappears from the final results (possibly by its absorption in a finite number of measured constants), the theory is called renormalizable.

  4. 4.

    \(\sin ^2\theta _W\simeq 0.231\) [9].

  5. 5.

    Equal to one for leptons and to three for quarks.

  6. 6.

    \(G_F\simeq 1.17\times 10^{-5}\) GeV\(^{-2}\) [9].

References

  1. C. Burgess, G. Moore, The Standard Model, a Primer (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  2. D. Griffiths, Introduction to Elementary Particles (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  3. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961), https://doi.org/10.1016/0029-5582(61)90469-2

  4. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967), https://doi.org/10.1103/PhysRevLett.19.1264

  5. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C 680519, 367–377 (1968)

    Google Scholar 

  6. J. Gunion et al., The Higgs Hunter’s Guide (Perseus Publishing, Cambridge, 1990)

    Google Scholar 

  7. P. Ramond, Journeys Beyond the Standard Model (Perseus Books, Cambridge, 1999)

    Google Scholar 

  8. J.J. Thomson, Cathode rays. Phil. Mag. 44, 293–316 (1897), https://doi.org/10.1080/14786449708621070

  9. Particle Data Group, Review of particle physics. Chin. Phys. C 38, 090001 (2014), https://doi.org/10.1088/1674-1137/38/9/090001

  10. P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964), https://doi.org/10.1103/PhysRevLett.13.508

  11. P. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964), https://doi.org/10.1016/0031-9163(64)91136-9

  12. P. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966), https://doi.org/10.1103/PhysRev.145.1156

  13. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964), https://doi.org/10.1103/PhysRevLett.13.321

  14. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964), https://doi.org/10.1103/PhysRevLett.13.585

  15. T.W.B. Kibble, Symmetry breaking in non abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967), https://doi.org/10.1103/PhysRev.155.1554

  16. CMS Collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of _ leptons. JHEP 1405, 104 (2014), https://doi.org/10.1007/JHEP05(2014)104, arXiv:1401.5041 [hep-ex]

  17. LHC Higgs cross section working group, LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

  18. A. Djouadi, The anatomy of electro-weak symmetry breaking - Tome I: the Higgs boson in the standard model (2005), arXiv:0503.172 [hep-ph]

  19. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2013), https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]

  20. ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2013), https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Caillol .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caillol, C. (2018). The Standard Model of Particle Physics. In: Scalar Boson Decays to Tau Leptons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70650-4_1

Download citation

Publish with us

Policies and ethics