Skip to main content

Modeling Autoregulation of Cerebral Blood Flow Using Viability Approach

  • Chapter
  • First Online:

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 15))

Abstract

A model of autoregulation of cerebral blood flow is under consideration. The flow is described using a blood vessel network, and blood is considered as a micropolar fluid. Sudden changes in partial pressure of oxygen and carbon dioxide in the arterial blood are considered as disturbances, and medicines dilating or restricting blood vessels are referred as control. A viability approach is applied as follows. An appropriate safety domain (ASD) is chosen in the space of state variables, and the discriminating kernel, the largest subset of ASD, where the state vector can be kept, is computed. Feedback controls forcing the state vector to remain in the discriminating kernel are constructed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adcock, L. M.: Clinical manifestations and diagnosis of intraventricular hemorrhage in the newborn. UpToDate, Dec 14 (2015)

    Google Scholar 

  2. Alastruey, J., Moore, S. M., Parker, K. H., David, T., Peiró, J., Scherwin, S. J.: Reduced modeling of blood flow in cerebral circulation: Coupling 1-D, 0-D and cerebral autoregulation models. Int J Num Meth in Fluids 56(8): 1061–1067 (2008)

    Google Scholar 

  3. Aubin, J.-P.: Viability Theory. Birkhäuser, Boston (1991)

    Google Scholar 

  4. Ballabh, P., Braun, A., Nedergaard, M.: Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 56(1), 117–124 (2004)

    Google Scholar 

  5. Bardi, M., Soravia, P., Falcone, M.: Fully discrete schemes for the value function of pursuit-evasion games. In: Başar, T., Hauri, A. (eds) Advances in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol. 1, pp. 89–105. Birkhäuser, Boston (1994)

    Google Scholar 

  6. Bardi, M., Falcone, M., Soravia, P.: Numerical methods for pursuit-evasion games via viscosity solutions. In: Bardi, M., Raghavan, T.E.S., Parthasarathy, T. (eds) Stochastic and Differential Games: Theory and Numerical Methods. Annals of the International Society of Dynamic Games, vol. 4, pp. 105–176. Birkhäuser, Boston (1999)

    Google Scholar 

  7. Battisti-Charbonney, A., Fisher, J., Duffin, J.: The cerebrovascular response to carbon dioxide in humans. J. Physiol. 589(12): 3039–3049 (2011)

    Google Scholar 

  8. Botkin, N. D.: Asymptotic behavior of solution in differential games. Viability domains of differential inclusions. Russian Acad. Sci. Dokl. Math. 46(1), 8–11 (1993)

    Google Scholar 

  9. Botkin, N. D., Hoffmann, K.-H., Turova, V. L.: Stable numerical schemes for solving Hamilton–Jacobi–Bellman–Isaacs equations. SIAM J. Sci. Comp. 33(2), 992–1007 (2011)

    Google Scholar 

  10. Botkin, N. D., Hoffmann, K.-H., Mayer, N., Turova, V. L.: Approximation schemes for solving disturbed control problems with non-terminal time and state constraints. Analysis 31, 355–379 (2011)

    Google Scholar 

  11. Botkin, N. D., Turova, V. L.: Numerical construction of viable sets for autonomous conflict control systems. Mathematics 2, 68–82 (2014)

    Google Scholar 

  12. Botkin, N. D., Turova, V. L.: Examples of computed viability kernels. Proceedings of the Institute of Mathematics and Mechanics (Trudy Instituta Matematiki i Mekhaniki) 21(2), 306–319 (2015)

    Google Scholar 

  13. Botkin, N., Turova, V., Diepolder, J., Bittner, M., Holzapfel, F.: Aircraft control during cruise flight in windshear conditions: viability approach. Dynamic Games and Applications, 1–15 (2017) Open access: https://link.springer.com/article/10.1007/s13235-017-0215-9

  14. Cardaliaguet, P.: A differential game with two players and one target. SIAM J. Control Optim. 34, 1441–1460 (1996)

    Google Scholar 

  15. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Set valued numerical analysis for optimal control and differential games. In: Bardi, M., Raghavan, T.E.S., Parthasarathy, T. (eds) Stochastic and Differential Games: Theory and Numerical methods. Annals of the International Society of Dynamic Games, vol. 4, pp. 177–274. Birkhäuser, Boston (1999)

    Google Scholar 

  16. Cristiani, E., Falcone, M.: Fully-discrete schemes for value function of pursuit-evasion games with state constraints. In: Bernhard, P., Gaitsgory, V., Pourtallier, O. (eds.) Advances in Dynamic Games and Their Applications, Annals of the International Society of Dynamic Games, vol. 10, pp. 177–206. Birkhäuser, Boston (2009)

    Google Scholar 

  17. David, T., Brown, M., Ferrandez, A.: Auto-regulation and blood flow in cerebral circulation. Int. J. Num. Meth. Fluids 43, 701–713 (2003)

    Google Scholar 

  18. Erdoǧan, M. E.: Polar effects in apparent viscosity of a suspension. Rheol. Acta 9, 434–438 (1970)

    Google Scholar 

  19. Falcone, M.: Numerical methods for differential games via PDEs. International Game Theory Review 8(2), 231–272 (2006)

    Google Scholar 

  20. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  21. Ferrandez, A., David, T., Brown, M. D.: Numerical models of auto-regulation and blood flow in the cerebral circulation. Comput. Methods Biomech. Biomed. Engin. 5(1): 7–19 (2002)

    Article  Google Scholar 

  22. Krasovskii, N. N., Subbotin, A. I.: Positional Differential Games. Nauka, Moscow (1974) (in Russian)

    MATH  Google Scholar 

  23. Krasovskii, N. N., Subbotin, A. I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Book  Google Scholar 

  24. Lampe, R., Botkin, N., Turova, V., Blumenstein, T., Alves-Pinto, A.: Mathematical modelling of cerebral blood circulation and cerebral autoregulation: Towards preventing intracranial hemorrhages in preterm newborns. Computational and Mathematical Methods in Medicine, 1–9 (2014)

    Google Scholar 

  25. Lou, H. C., Lassen, N. A., Friis-Hansen, B.: Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J. Pediatr. 94, 118–121 (1979)

    Article  Google Scholar 

  26. Lukaszewicz, G: Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  27. Mitchell, I. M.: Application of level set methods to control and reachability problems and hybrid systems. PhD Thesis, Stanford University (2002)

    Google Scholar 

  28. Mitchell, I. M.: A summary of recent progress on efficient parametric approximations of viability and discriminating kernels. EPiC Ser. Comput. Sci. 37, 23–31 (2015)

    Article  Google Scholar 

  29. Olufsen, M. S., Nadim, A., Lipsitz, L. A. Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Physiol Regul Integr Comp Physiol 282(2), R611–R622 (2002)

    Article  Google Scholar 

  30. Piechnik, S. K., Chiarelli, P. A., Jezzard, P.: Modelling vascular reactivity to investigate the basis of the relationship between cerebral blood volume and flow under CO2 manipulation. NeuroImage 39, 107–118 (2008)

    Article  Google Scholar 

  31. Ursino, M., Lodi, C. A.: A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82(4), 1256–1269 (1997)

    Article  Google Scholar 

  32. van de Bor, M., Walther, F. J.: Cerebral blood flow velocity regulation in preterm infants. Biol. Neonate 59, 329–335 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Christine Klindt-Schuster (clinic “Rechts der Isar,” Technical University of Munich) for her help with collecting the experimental data. Financial supports of the Klaus Tschira Foundation, Würth Foundation, and Buhl-Strohmaier-Foundation are gratefully acknowledged. Computer resources have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under grant: pr74lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varvara Turova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turova, V., Botkin, N., Alves-Pinto, A., Blumenstein, T., Rieger-Fackeldey, E., Lampe, R. (2017). Modeling Autoregulation of Cerebral Blood Flow Using Viability Approach. In: Apaloo, J., Viscolani, B. (eds) Advances in Dynamic and Mean Field Games. ISDG 2016. Annals of the International Society of Dynamic Games, vol 15. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70619-1_16

Download citation

Publish with us

Policies and ethics