Skip to main content

Fading and Diversity

  • 1077 Accesses


Fading is the variation in received signal strength due to changes in the physical characteristics of the propagation medium, which alter the interaction of multipath components of the transmitted signal. The principal means of counteracting fading are diversity methods, which are based on the exploitation of the latent redundancy in two or more independently fading copies of the same signal. The basic concept of diversity is that even if some copies are degraded, there is a high probability that others will not be. This chapter provides a general description of the most important aspects of fading and the role of diversity methods in counteracting it. Both direct-sequence and frequency-hopping signals are shown to provide diversity. The rake demodulator, which is of central importance in most direct-sequence systems, is shown to be capable of exploiting undesired multipath signals rather than simply attempting to reject them. The multicarrier direct-sequence system and frequency-domain equalization are shown to be alternative methods of advantageously processing multipath signals.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70569-9_6
  • Chapter length: 95 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-70569-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32


  1. F. Adachi, D. Garg, S. Takaoka, and K. Takeda, “Broadband CDMA Techniques,” IEEE Wireless Commun., vol. 44, pp. 8–18, April 2005.

    Google Scholar 

  2. F. Adachi and K. Takeda, “Bit Error Rate Analysis of DS-CDMA with Joint Frequency-Domain Equalization and Antenna Diversity Combining,” IEICE Trans. Commun., vol. E87-B, pp. 2291–3001, Oct. 2004.

    Google Scholar 

  3. J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, 3rd ed., Kluwer Academic, 2004.

    Google Scholar 

  4. T. T. Ha, Theory and Design of Digital Communication Systems, Cambridge Univ. Press, 2011.

    Google Scholar 

  5. K. Higuchi et al., “Experimental Evaluation of Combined Effect of Coherent Rake Combining and SIR-Based Fast Transmit Power Control for Reverse Link of DS-CDMA Mobile Radio,” IEEE J. Select. Areas Commun., vol. 18, pp. 1526–1535, Aug. 2000.

    Google Scholar 

  6. E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications, Cambridge Univ. Press, 2003.

    Google Scholar 

  7. C. Phillips, D. Sicker, and D. Grunwald, “A Survey of Wireless Path Loss Prediction and Coverage Mapping Methods,” IEEE Trans. Commun. Surveys Tut., vol. 15, pp. 255–270, first quarter, 2013.

    Google Scholar 

  8. J. G. Proakis and M. Salehi, Digital Communications, 5th ed., McGraw-Hill, 2008.

    Google Scholar 

  9. Y. Rahmatallah and S. Mohan, Member, “Peak-To-Average Power Ratio Reduction in OFDM Systems: A Survey And Taxonomy,” IEEE Commun. Surveys Tut., vol. 15, pp. 1567–1592, fourth quarter, 2013.

    Google Scholar 

  10. M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, 2nd ed.,Wiley, 2004.

    Google Scholar 

  11. R. A. Soni and R. M. Buehrer, “On the Performance of Open-Loop Transmit Diversity Techniques for IS-2000 Systems: A Comparative Study,” IEEE Trans. Wireless Commun., vol. 3, pp. 1602–1615, Sept. 2004.

    Google Scholar 

  12. G. Stuber, Principles of Mobile Communication, 4th ed., Springer, 2017.

    Google Scholar 

  13. B. S. Tan, K. H. Li, and K. C. Teh, “Transmit Antenna Selection Systems,” IEEE Vehicular Technol. Mag., vol. 8, pp. 104–112, Sept. 2013.

    Google Scholar 

  14. S. Tanaka, A. Harada, and F. Adachi, “Experiments on Coherent Adaptive Antenna Array Diversity for Wideband DS-CDMA Mobile Radio,” IEEE J. Select. Areas Commun., vol. 18, pp. 1495–1504, Aug. 2000.

    Google Scholar 

  15. L. L. Yang and L. Hanzo, “Serial Acquisition Performance of Single-Carrier and Multicarrier DS-CDMA over Nakagami-m Fading Channels,” IEEE Trans. Wireless Commun., vol. 1, pp. 692–702, Oct. 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Torrieri, D. (2018). Fading and Diversity. In: Principles of Spread-Spectrum Communication Systems. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70568-2

  • Online ISBN: 978-3-319-70569-9

  • eBook Packages: EngineeringEngineering (R0)