Advertisement

Tropical Computations in polymake

Chapter

Abstract

We give an overview of recently implemented polymake features for computations in tropical geometry. The main focus is on explicit examples rather than technical explanations. Our computations employ tropical hypersurfaces, moduli of tropical plane curves, tropical linear spaces and Grassmannians, lines on tropical cubic surfaces as well as intersection rings of matroids.

Keywords

Mathematical software Tropical hypersurfaces Tropical linear spaces 

Subject Classifications

14-04 (14T05 14Q99 52-04) 

Notes

Acknowledgements

We would like to thank Elizabeth Baldwin and Diane Maclagan for many helpful suggestions on improving this paper.

References

  1. 1.
    X. Allamigeon, TPLib (Tropical Polyhedra Library) (2013), http://www.cmap.polytechnique.fr/~allamigeon/software/ Google Scholar
  2. 2.
    L. Allermann, J. Rau, First steps in tropical intersection theory. Math. Z. 264(3), 633–670 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Ardila, C.J. Klivans, The Bergman complex of a matroid and phylogenetic trees. J. Combin. Theory Ser. B 96(1), 38–49 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Baldwin, P. Klemperer, Understanding preferences: “Demand Types”, and the existence of equilibrium with indivisibilities, Nuffield College, Working Paper (2015)Google Scholar
  5. 5.
    A.L. Birkmeyer, A. Gathmann, Realizability of tropical curves in a plane in the non-constant coefficient case (2014, Preprint), arXiv:1412.3035Google Scholar
  6. 6.
    T. Bogart, E. Katz, Obstructions to lifting tropical curves in surfaces in 3-space. SIAM J. Discret. Math. 26(3), 1050–1067 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Brannetti, M. Melo, F. Viviani, On the tropical Torelli map. Adv. Math. 226(3), 2546–2586 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Brodsky, M. Joswig, R. Morrison, B. Sturmfels, Moduli of tropical plane curves. Res. Math. Sci. 2(4), 1–31 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    E. Brugallé, K. Shaw, Obstructions to approximating tropical curves in surfaces via intersection theory. Canad. J. Math. 67(3), 527–572 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Castryck, J. Voight, On nondegeneracy of curves. Algebra Number Theory 3(3), 255–281 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.A. De Loera, J. Rambau, F. Santos, Triangulations. Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 25 (Springer, Berlin, 2010)Google Scholar
  12. 12.
    W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-0 – A computer algebra system for polynomial computations (2016), http://www.singular.uni-kl.de Google Scholar
  13. 13.
    M. Develin, B. Sturmfels, Tropical convexity. Doc. Math. 9, 1–27 (electronic) (2004). Correction: ibid., pp. 205–206Google Scholar
  14. 14.
    A.W.M. Dress, W. Wenzel, Valuated matroids. Adv. Math. 93(2), 214–250 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Edmonds, Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) (Gordon and Breach, New York, 1970), pp. 69–87Google Scholar
  16. 16.
    A. Fink, Tropical cycles and chow polytopes. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry 54(1), 13–40 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. François, J. Rau, The diagonal of tropical matroid varieties and cycle intersections. Collect. Math. 64(2), 185–210 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Fulton, B. Sturmfels, Intersection theory on toric varieties. Topology 36(2), 335–353 (1997)MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Ganter, Algorithmen zur formalen Begriffsanalyse, ed. by B. Ganter, R. Wille, K.E. Wolff. Beiträge zur Begriffsanalyse (Bibliographisches Institut, Mannheim, 1987), pp. 241–254Google Scholar
  20. 20.
    B. Ganter, K. Reuter, Finding all closed sets: a general approach. Order 8(3), 283–290 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. Gawrilow, M. Joswig, Flexible object hierarchies in polymake, in Proceedings of the 2nd International Congress of Mathematical Software, Castro Urdiales, Spanien, 1–3 Sept 2006, ed. by A. Igelesias, N. Takayama (2006), pp. 219–221Google Scholar
  22. 22.
    I.M. Gel’fand, M. Goresky, R.D. MacPherson, V.V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)MathSciNetCrossRefGoogle Scholar
  23. 23.
    J. Giansiracusa, N. Giansiracusa, Equations of tropical varieties. Duke Math. J. 165(18), 3379–3433 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry (2017), available at http://www.math.uiuc.edu/Macaulay2/ Google Scholar
  25. 25.
    W. Gubler, J. Rabinoff, A. Werner, Tropical skeletons (2015, preprint), arXiv:1508.01179Google Scholar
  26. 26.
    S. Hampe, a-tint: a polymake extension for algorithmic tropical intersection theory. Eur. J. Combin. 36, 579–607 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Hampe, The intersection ring of matroids. J. Comb. Theory Ser. B 122, 578–614 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Herrmann, On the facets of the secondary polytope. J. Comb. Theory Ser. A 118(2), 425–447 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Herrmann, A. Jensen, M. Joswig, B. Sturmfels, How to draw tropical planes. Electron. J. Comb. 16(2), Special volume in honor of Anders Björner, Research Paper 6, 26 (2009)Google Scholar
  30. 30.
    A.N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties, version 0.6, available at http://home.imf.au.dk/jensen/software/gfan/gfan.html (2017)
  31. 31.
    A. Jensen, J. Yu, Stable intersections of tropical varieties. J. Algebraic Comb. 43(1), 101–128 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    A.N. Jensen, H. Markwig, T. Markwig, Y. Ren, tropical.lib. a Singular 4-1-0 library for computations in tropical goemetry, Tech. report (2016)Google Scholar
  33. 33.
    M. Joswig, Tropical convex hull computations, in Tropical and Idempotent Mathematics, ed. by G.L. Litvinov, S.N. Sergeev. Contemporary Mathematics, vol. 495 (American Mathematical Society, Providence, RI, 2009)Google Scholar
  34. 34.
    M. Joswig, G. Loho, B. Lorenz, B. Schröter, Linear programs and convex hulls over fields of Puiseux fractions, in Proceedings of MACIS 2015, LNCS 9582, Berlin, 11–13 Nov 2015 (2016), pp. 429–445CrossRefGoogle Scholar
  35. 35.
    M.M. Kapranov, Chow Quotients of Grassmannians. I, ed. by I.M. Gel’ fand Seminar. Advances in Soviet Mathematics, vol. 16 (American Mathematical Society, Providence, RI, 1993), pp. 29–110Google Scholar
  36. 36.
    P. Klemperer, A new auction for substitutes: central bank liquidity auctions, the U.S. TARP, and variable product-mix auctions, University of Oxford, Working Paper (2008)Google Scholar
  37. 37.
    P. Klemperer, The product-mix auction: a new auction design for differentiated goods. J. Eur. Econ. Assoc. 8, 526–536 (2010)CrossRefGoogle Scholar
  38. 38.
    D. Maclagan, F. Rincón, Tropical schemes, tropical cycles, and valuated matroids (2014, preprint), arXiv:1401.4654Google Scholar
  39. 39.
    D. Maclagan, B. Sturmfels, Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161 (American Mathematical Society, Providence, RI, 2015)Google Scholar
  40. 40.
    G. Mikhalkin, Enumerative tropical algebraic geometry in \(\mathbb {R}^2\). J. Am. Math. Soc. 18(2), 313–377 (2005)Google Scholar
  41. 41.
    G. Mikhalkin, J. Rau, Tropical geometry, work in progress, available at https://www.math.uni-tuebingen.de/user/jora/downloads/main.pdf (2015)
  42. 42.
    J. Oxley, Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. (Oxford University Press, Oxford, 2011)Google Scholar
  43. 43.
    Y. Ren, Computing tropical varieties over fields with valuation using classical standard basis techniques. ACM Commun. Comput. Algebra 49(4), 127–129 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Q. Ren, K. Shaw, B. Sturmfels, Tropicalization of del Pezzo surfaces. Adv. Math. 300, 156–189 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    F. Rincón, Computing tropical linear spaces. J. Symb. Comput. 51, 86–98 (2013)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. Vol. A. Algorithms and Combinatorics, vol. 24 (Springer, Berlin, 2003). Paths, flows, matchings, Chapters 1–38Google Scholar
  47. 47.
    K.M. Shaw, A tropical intersection product in matroidal fans. SIAM J. Discret. Math. 27(1), 459–491 (2013)MathSciNetCrossRefGoogle Scholar
  48. 48.
    D.E. Speyer, Tropical linear spaces. SIAM J. Discret. Math. 22(4), 1527–1558 (2008)MathSciNetCrossRefGoogle Scholar
  49. 49.
    D. Speyer, B. Sturmfels, The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004)MathSciNetCrossRefGoogle Scholar
  50. 50.
    B. Sturmfels, Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation, 2nd edn. (Springer, New York, 2008)Google Scholar
  51. 51.
    J.A. Thas, H. Van Maldeghem, Embeddings of small generalized polygons. Finite Fields Appl. 12(4), 565–594 (2006)MathSciNetCrossRefGoogle Scholar
  52. 52.
    N.M. Tran, J. Yu, Product-mix auctions and tropical geometry (2015, preprint), arXiv:1505.05737Google Scholar
  53. 53.
    M.D. Vigeland, Tropical lines on smooth tropical surfaces (2007, preprint), arXiv:0708.3847Google Scholar
  54. 54.
    N. White (ed.), Theory of Matroids. Encyclopedia of Mathematics and Its Applications, vol. 26 (Cambridge University Press, Cambridge, 1986)Google Scholar
  55. 55.
    I. Zharkov, The Orlik-Solomon algebra and the Bergman fan of a matroid. J. Gökova Geom. Topol. GGT 7, 25–31 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations