Advertisement

Urban Soil Respiration and Its Autotrophic and Heterotrophic Components Compared to Adjacent Forest and Cropland Within the Moscow Megapolis

  • V. I. VasenevEmail author
  • S. Castaldi
  • M. M. Vizirskaya
  • N. D. Ananyeva
  • A. S. Shchepeleva
  • I. M. Mazirov
  • K. V. Ivashchenko
  • R. Valentini
  • I. I. Vasenev
Conference paper
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

Urbanization is a key land-use change pathway, increasing urban population and resulting in abandonment of rural areas. Urbanization alters profoundly soil properties and functions, including soil respiration [90]. Soil respiration includes heterotrophic (microbial) and autotrophic (root) components. Both are driven by biotic and abiotic factors. Soil respiration and its components in urban ecosystems remain poorly known. In the present study, the spatial and temporal variability of total soil respiration (Rs) and its components were analyzed for different ecosystems included in the Moscow megalopolis area. In particular, highly impacted areas of urban green lawns were compared to arable lands and urban forest sites. Respiration fluxes were monitored during the whole vegetation period. An average Rs was significantly higher for the most disturbed sites, compared to more natural sites. For all the sites, Rh was the dominant component of soil respiration. We report the highest heterotrophic respiration ratio to microbial C (qCO2 = Rh/Cmic) for the lawn land use, followed by arable sites and forest sites, characterized by the lowest qCO2. An average Ra contributed to total Rs only to a minor extent (26%) and increased in all study sites along the season. Ra absolute values and contribution to Rs were similar for different land use types.

Keywords

Root respiration Microbial respiration Urban lawns Urban forest Microbial biomass 

Notes

Acknowledgements

The project was supported by Russian Science Foundation project № 17-77-20046. The authors thank Pavel Lakeev, Irma Elvira Ade and Dmitry Gusev for assistance with the field measurement as well as Dr. Julia Kurbatova for valuable suggestions and useful comments.

References

  1. 1.
    Ananyeva, N.D., Susyan, E.A., Chernova, O.V., Wirth, S.: Microbial respiration activities of soils from different climatic regions of European Russia. Eur. J. Soil Biol. 44, 147–157 (2008)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.P., Domsch, K.H.: A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978)CrossRefGoogle Scholar
  3. 3.
    Anderson, T.H., Domsch, K.H.: Determination of ecophysiological maintenance requirements of soil micro-organisms in a dormant state. Biol. Fert. Soils 1, 81–89 (1985)CrossRefGoogle Scholar
  4. 4.
    Anderson, T.H., Domsch, K.H.: C links between microbial biomass and soil organic matter. In: Megusar, F., Gantar, M. (eds.) Perspectives in Microbial Ecology, pp. 467–471. Slovene Society for Microbiology, Ljubljana (1986)Google Scholar
  5. 5.
    Barajas-Aceves, M.: Comparison of different microbial biomass and activity measurement methods in metal contaminated soils. Bioresour. Technol. 96, 1405–1414 (2005)CrossRefGoogle Scholar
  6. 6.
    Bastida, F., Zsolnay, A., Hernandez, T., Garcia, C.: Past, present and future of soil quality indices: a biological perspective. Geoderma 147, 159–171 (2008)CrossRefGoogle Scholar
  7. 7.
    Beesley, L.: C storage and fluxes in existing and newly created urban soils. J. Environ. Manag. 104, 158–165 (2012)CrossRefGoogle Scholar
  8. 8.
    BelelliMarchesini, L., Papale, D., Reichstein, M., Vuichard, N., Tchebakova, N., Valentini, R.: C balance assessment of a natural steppe of southern Siberia by multiple constraint approach. Biogeosciences 4, 581–595 (2007)CrossRefGoogle Scholar
  9. 9.
    Blagodatskaya, E.V., Pampura, T.V., Dem’yanova, E.G., Myakshina, T.N.: Effect of lead on growth characteristics of microorganisms in soil and rhizosphere of Dactylisglomerata. Eurasian Soil Sci. 39(6), 635–660 (2006)CrossRefGoogle Scholar
  10. 10.
    Bochin, L.A. (ed.): Report of the Environment in Moscow in 2007. Department for nature use and environment protection of Moscow city, Moscow (2008)Google Scholar
  11. 11.
    Bond-Lamberty, A., Thomson, A.: A global database of soil respiration data. Biogeosciences 7, 1915–1926 (2010)CrossRefGoogle Scholar
  12. 12.
    Buyanovsky, G.A., Wagner, G.H.: C cycling in cultivated land and its global significance. Glob. Change Biol. 4(2), 131–141 (1998)CrossRefGoogle Scholar
  13. 13.
    Castaldi, S., Rutigliano, F.A., Virzo de Santo, A.: Suitability of soil microbial parameters as indicators of heavy metal pollution. Water Air Soil Poll. 158, 21–35 (2004)CrossRefGoogle Scholar
  14. 14.
    Chapin III, F.S., Woodwell, G.M., Randerson, J.T., et al.: Reconciling C-cycle concepts, terminology, and methods. Ecosystems 9, 1041–1050 (2006)CrossRefGoogle Scholar
  15. 15.
    Creamer, R.E., Schulte, R.P.O., Stone, D., et al.: Measuring basal soil respiration across Europe: do incubation temperature and incubation period matter? Ecol. Ind. 36, 409–418 (2014)CrossRefGoogle Scholar
  16. 16.
    Cruvinel, E.F., Bustamante, M.M.C., Kozovits, A., Zepp, R.G.: Soil emission of NO, N2O and CO2 from croplands in the savanna region of central Brazil. AgrEcosyst. Environ. 144, 29–40 (2011)CrossRefGoogle Scholar
  17. 17.
    Dilly, O., Blume, H.P., Sehy, U., Jimenez, M., Munich, J.C.: Variation of stabilized, microbial and biologically active C and nitrogen soil under contrasting land use and agricultural management practices. Chemosphere 52, 557–569 (2003)CrossRefGoogle Scholar
  18. 18.
    FAO: Soils Map of the World: Revised Legend. Food and Agriculture Organization of the United Nations, Rome (1988)Google Scholar
  19. 19.
    Ferrea, C., Zenone, T., Comolli, R., Seufert, G.: Estimating heterotrophic and autotrophic soil respiration in a semi-natural forest of Lombardy, Italy. Pedobiologia 55, 285–294 (2012)CrossRefGoogle Scholar
  20. 20.
    Fromin, N., Porte, B., Lensi, R., Hamelin, J., Domenach, A.-M., Buatois, B., Roggy, J.-C.: Spatial variability of the functional stability of microbial respiration process: a microcosm study using tropic forest soil. J. Soils Sed. 12, 1030–1039 (2012)CrossRefGoogle Scholar
  21. 21.
    Galford, G.L., Melillo, J., Mustard, J.F., Cerri, C.E.P., Cerri, C.C.: The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions. Earth Interact. 14, 1–20 (2010)CrossRefGoogle Scholar
  22. 22.
    Gavrichkova, O.: Drivers of soil respiration of root and microbial origin in grasslands. Doctorate thesis. Tuscia University. Viterbo (2010)Google Scholar
  23. 23.
    Gerasimova, M.I., Stroganova, M.N., Mozharova, N.V., Prokofieva, T.V.: Urban Soils. Oykumena, Smolensk (2003)Google Scholar
  24. 24.
    Gomes-Casanovas, N., Matamala, R., Cook, D.R., Gonzalez-Meler, M.A.: Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands. Glob. Change Biol. 18, 2532–2545 (2012)CrossRefGoogle Scholar
  25. 25.
    Groffman, P.M., Law, N.L., Belt, K.T., Band, L.E., Fisher, G.T.: Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7, 393–403 (2004)Google Scholar
  26. 26.
    Guo, L.B., Gifford, R.M.: Soil C stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002)CrossRefGoogle Scholar
  27. 27.
    Hamilton, J.G., DeLucia, E.H., George, K., Naidu, S.L., Finzi, A.C., Schlesinger, W.H.: Forest C balance under elevated CO2. Oecologia 131, 250–260 (2002)CrossRefGoogle Scholar
  28. 28.
    Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A.: Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115–146 (2000)CrossRefGoogle Scholar
  29. 29.
    Heinemeyer, A., Totrorellal, D., Petrovicova, B., Gelsomino, A.: Partitioning of soil CO2 flux components in a temperate grassland ecosystem. Eur. J. Soil Sci. 63(2), 249–260 (2012)CrossRefGoogle Scholar
  30. 30.
    Houghton, R.A.: Why are estimates of the terrestrial C balance so different? Glob. Change Biol. 9, 500–509 (2003)CrossRefGoogle Scholar
  31. 31.
    Hughes, R.F., Kauffman, J.B., Jaramillo, V.J.: Biomass, C, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80, 1892–1907 (1999)Google Scholar
  32. 32.
    Il’ina, I.N. (ed.): Ecological Atlas of Moscow. ABF, Moscow (2000)Google Scholar
  33. 33.
    Insam, H., Hutchinson, T.C., Reber, H.H.: Effects of heavy metal stress on the metabolic quotient of soil microflora. Soil Biol. Biochem. 28, 691–694 (1996)CrossRefGoogle Scholar
  34. 34.
    Metz, B., Davidson, O., de Coninck, C.H., Loos, M., Meyer, L.A. (eds.) IPCC (2005): IPCC special report on C dioxide capture and storage’, prepared by Working Group III of the Intergovernmental Panel on Climate Change. CambridgeUniversity Press, Cambridge, United Kingdom and New York, NY, USA, p. 442 (2005)Google Scholar
  35. 35.
    Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.): IPCC (2013): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p. (2013)Google Scholar
  36. 36.
    Islam, K.R., Weil, R.R.: Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 79, 9–16 (2000)CrossRefGoogle Scholar
  37. 37.
    Ivashchenko, K.V., Ananyeva, N.D., Vasenev, V.I., Kudeyarov, V.N., Valentini, R.: Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region). Eurasian Soil Sci. 47(9), 892–903 (2014)CrossRefGoogle Scholar
  38. 38.
    Janzen, H.H.: C cycling in earth systems - a soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004)CrossRefGoogle Scholar
  39. 39.
    Kaye, J.P., McCulley, R.L., Burkez, I.C.: C fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob. Change Biol. 11, 575–587 (2005)CrossRefGoogle Scholar
  40. 40.
    Khan, M., Scullion, J.: Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil. Ecol. 20(2), 145–155 (2002)CrossRefGoogle Scholar
  41. 41.
    Koerner, B., Klopatek, J.: Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ. Pollut. 116, 45–51 (2002)CrossRefGoogle Scholar
  42. 42.
    Koechy, M., Hiederer, R., Freibauer, A.: Global distribution of soil organic C - Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost region, wetlands, and the world. Soil 1, 351–356 (2015)CrossRefGoogle Scholar
  43. 43.
    Komarov, A.S., Chertov, O.G., Zudin, S.L., et al.: EFIMOD 2—a model of growth and elements cycling of boreal forest ecosystems. Ecol. Model. 170, 373–392 (2003)CrossRefGoogle Scholar
  44. 44.
    Kozlowski, T.T., Pallardy, S.G.: Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 68(2), 270–334 (2002)CrossRefGoogle Scholar
  45. 45.
    Kudeyarov, V.N., Zavarzin, G.A., Blagodatsky, S.A., et al.: C Pools and Fluxes in Terrestrial Ecosystems of Russia. Nauka, Moscow (2007)Google Scholar
  46. 46.
    Kurbatova, A.S., Bashkin, V.N., Barannikova, Yu.A., et al.: Ecological Functions of Urban Soils. Smolensk–Moscow (2004)Google Scholar
  47. 47.
    Kurganova, I.N., De Gerenuy, V.L., Rozanova, L., Sapronov, D., Myakshina, T., Kudeyarov, V.: Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus Ser. B: Chem. Phys. Meteorol. 55(2), 338–344 (2003)CrossRefGoogle Scholar
  48. 48.
    Kurganova, I.N., Yermolaev, A.M., Lopes de Gerenyu, V.O., Larionova, A.A., Kuzyakov, Y., Keller, T., Lange, S.: C balance in the soils of abandoned lands in Moscow region. Eurasian Soil Sci. 40(1), 51–58 (2007)CrossRefGoogle Scholar
  49. 49.
    Kuzyakov, Y.: Sources of CO2 efflux from soil and review of partitioning methods (review). Soil Biol. Biochem. 38, 425–448 (2006)CrossRefGoogle Scholar
  50. 50.
    Kuzyakov, Y., Domanski, G.: C input by plants into soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000)CrossRefGoogle Scholar
  51. 51.
    Kuzyakov, Y., Gavrichkova, O.: Review: time lag between photosynthesis and C dioxide efflux from soil: a review of mechanisms and controls. Glob. Change Biol. 16, 3386–3406 (2010)CrossRefGoogle Scholar
  52. 52.
    Kuzyakov, Y., Larionova, A.A.: Root and rhizomicrobial respiration: a review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil. J. Plant Nutr. Soil Sci. 168(4), 503–520 (2005)CrossRefGoogle Scholar
  53. 53.
    Larionova, A.A., Rozanova, L.N., Demkina, T.S., Evdokimov, I.V., Blagodatskii, S.A.: Annual emission of CO2 from gray forest soil. Eurasian Soil Sci. 34(1), 61–68 (2001)Google Scholar
  54. 54.
    Lavinge, M.B., Foster, R.J., Goodine, G.: Seasonal and annual changes in soil respiration in relation to soil temperature, water potential and trenching. Tree Physiol. 24, 415–424 (2004)CrossRefGoogle Scholar
  55. 55.
    Leake, J.R., Johnso, D., Donnelly, D.P., Muckle, G.E., Boddy, L., Read, D.J.: Networks of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot.- Revue Canadienne De Botanique 82, 1016–1045 (2004)Google Scholar
  56. 56.
    Li, X., Zeng, W., Li, J., Huang, X., Zhong, X., Yang, Y.: Effects of short-term cold-air outbreak on soil respiration and its components of subtropical urban green spaces. Shengtai Xuebao/Acta Ecologica Sinica 31(19), 5728–5738 (2011)Google Scholar
  57. 57.
    Lorenz, K., Lal, R.: Biogeochemical C and N cycles in urban soils. Environ. Int. 35, 1–8 (2009)CrossRefGoogle Scholar
  58. 58.
    Lysak, L.V., Lapygina, E.V., Konova, I.A., Zvyagintsev, D.G.: Population density and taxonomic composition of bacterial nanoforms in soils of Russia. Eurasian Soil Sci. 43(7), 765–770 (2010)CrossRefGoogle Scholar
  59. 59.
    Mazirov, M.A., Safonov, A.F.: Long-term field experiment in RSAU-MTAA: main points and development stages. Izvestya MTAA 2, 66–75 (2010)Google Scholar
  60. 60.
    Milesi, C., Running, S.W.: Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manag. 36, 426–438 (2005)CrossRefGoogle Scholar
  61. 61.
    Moyano, F., Kutsch, W., Rebmann, C.: Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric. For. Manag. 48, 135–143 (2008)CrossRefGoogle Scholar
  62. 62.
    Naizheng, X., Hongying, L., Feng, W., Yiping, Z.: Urban expanding pattern and soil organic, inorganic C distribution in Shanghai China. Environ. Earth Sci. 66(4), 1233–1238 (2012)CrossRefGoogle Scholar
  63. 63.
    Naumov, V.D. (ed.): 145 years to forest experimental station of RSAU-MTAA. RSAU- MTAA, Moscow (2009)Google Scholar
  64. 64.
    Nwachukwu, O.I., Pulford, I.D.: Microbial respiration as an indication of metal toxicity in contaminated organic materials and soil. J. Hazard. Mater. 185, 1140–1147 (2011)CrossRefGoogle Scholar
  65. 65.
    Pataki, D.E., Ellsworth, D.S., Evans, R., et al.: Tracing changes in ecosystem function under elevated C dioxide conditions. Bioscience 53(9), 805–818 (2003)CrossRefGoogle Scholar
  66. 66.
    Pickett, S.T.A., Cadenasso, M.L., Grove, J.M.: Urban ecological systems: scientific foundations and a decade of progress. J. Environ. Manag. 92, 331–362 (2011)CrossRefGoogle Scholar
  67. 67.
    Post, W.M., Kwon, K.C.: Soil C sequestration and land-use changes: processes and potential. Glob. Change Biol. 6, 317–327 (2000)CrossRefGoogle Scholar
  68. 68.
    Pouyat, R., Groffman, P., Yesilonis, I., Hernandez, L.: Soil C pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002)CrossRefGoogle Scholar
  69. 69.
    Prokofyeva, T.V., Martynenko, I.A., Ivannikov, F.A.: Classification of Moscow soils and parent materials and its possible inclusions in the classification system of Russian soils. Eurasian Soil Sci. 44, 561–571 (2011)CrossRefGoogle Scholar
  70. 70.
    Raich, J.W., Potter, C.S., Bhagawati, D.: Interannual variability in global respiration, 1980–94. Glob. Change Biol. 8, 800–812 (2002)CrossRefGoogle Scholar
  71. 71.
    Raich, J.W., Tufekcioglu, A.: Vegetation and soil respiration: correlations and controls. Biogeochemistry 48, 71–90 (2000)CrossRefGoogle Scholar
  72. 72.
    Rey, A., Pegorado, E., Tedeschi, V., De Parri, I., Jarvis, P.G., Valentini, R.: Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Change Biol. 8, 851–866 (2002)CrossRefGoogle Scholar
  73. 73.
    Rossiter, D.G.: Classification of urban and industrial soils in the world reference base for soil resources. J. Soils Sed. 7, 96–100 (2007)CrossRefGoogle Scholar
  74. 74.
    Scalenghe, R., Marsan, F.A.: The anthropogenic sealing of soil in urban areas. Landscape Urban Plan. 90, 1–10 (2009)CrossRefGoogle Scholar
  75. 75.
    Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S.: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur. J. Soil Sci. 61(5), 683–696 (2010)CrossRefGoogle Scholar
  76. 76.
    Schulze, E.D.: Biological control of the terrestrial C sink. Biogeosciences 2, 147–166 (2006)CrossRefGoogle Scholar
  77. 77.
    Shen, Z., Shi, B., Jiang, H.: The temperature dependence of soil organic matter decomposition and CO2 efflux: a review. Shengtai Xuebao/Acta Ecologica Sinica 33(10), 3011–3019 (2013)CrossRefGoogle Scholar
  78. 78.
    Shishov, V. (ed.): Soils of Moscow Region and Their Use. Dokuchaev Soil Science Institute, Moscow (2002)Google Scholar
  79. 79.
    Sitch, S., Smit, B., Prentice, I.C., Arneth, A., et al.: Evaluation of ecosystem dynamics, plant geography and terrestrial C cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003)CrossRefGoogle Scholar
  80. 80.
    Sun, Q., Fang, H.L., Liang, J., Qian, X.W., Liu, M.D., Zhang, Q.F., Hao, R.J., Hao, G.J.: Soil respiration characteristics of typical urban lawns in Shanghai. Chin. J. Ecol. 28(8), 1572–1578 (2009)Google Scholar
  81. 81.
    Susyan, E.A., Ananyeva, N.D., Blagodatskaya, E.V.: The antibiotic-aided distinguishing of fungal and bacterial substrate-induced respiration in various soil ecosystems. Microbiology 74, 336–342 (2005)CrossRefGoogle Scholar
  82. 82.
    Swift, R.S.: Sequestration of C by soil. Soil Sci. 166, 858–871 (2001)CrossRefGoogle Scholar
  83. 83.
    Taneva, L., Gonzalez-Meler, M.: Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment. Biogeosciences 8(10), 3077–3092 (2011)CrossRefGoogle Scholar
  84. 84.
    Thuille, A., Buchmann, N., Schulze, E.D.: C stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps Italy. Tree Physiol. 20(13), 849–857 (2000)CrossRefGoogle Scholar
  85. 85.
    Vasenev, V.I., Stoorvogel, J.J., Vasenev, I.I., Valentini, R.: How to map soil organic stocks in highly urbanized region? Geoderma 226-227, 103–115 (2014)CrossRefGoogle Scholar
  86. 86.
    Vasenev, V.I., Ananyeva, N.D., Ivashchenko, K.V.: Influence of contaminants (oil products and heavy metals) on microbiological activity of urban constructed soils. Russ. J. Ecol. 6, 475–483 (2013a)Google Scholar
  87. 87.
    Vasenev, V.I., Prokofieva, T.V., Makarov, O.A.: Development of the approach to assess soil organic C stocks in megapolis and small settlement. Eurasian Soil Sci. 6, 1–12 (2013b)Google Scholar
  88. 88.
    Vasenev, V.I., Stoorvogel, J.J., Vasenev, I.I.: Urban soil organic C and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena 107, 96–102 (2013c)Google Scholar
  89. 89.
    Vasenev, V.I., Ananyeva, N.D., Makarov, O.A.: Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast. Eurasian Soil Sci. 45, 194–205 (2012)CrossRefGoogle Scholar
  90. 90.
    Vasenev, V., Cataldi, S., Vizirskaya, M., Ananyeva, N., Ivashchenko, K., Valenini, R., Vasenev, I.: Root and microbial respiration from urban, agricultural and natural soils within Moscow megapolis. In: Geophysical Research Abstracts, vol. 17. EGU2015–150 (2015)Google Scholar
  91. 91.
    Vorobyova, L.A.: Soil Chemical Analysis. MSU, Moscow (1998)Google Scholar
  92. 92.
    Vasenev, V.I.: How does urbanization affect spatial variability and temporal dynamics of soil organic carbon in the Moscow region? Ph.D. thesis, Wageningen University, Wageningen, Netherlands (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • V. I. Vasenev
    • 1
    • 2
    Email author
  • S. Castaldi
    • 3
  • M. M. Vizirskaya
    • 1
  • N. D. Ananyeva
    • 4
  • A. S. Shchepeleva
    • 1
    • 2
  • I. M. Mazirov
    • 1
  • K. V. Ivashchenko
    • 2
    • 4
  • R. Valentini
    • 5
  • I. I. Vasenev
    • 1
    • 2
  1. 1.Laboratory of Agroecological Monitoring, Ecosystem Modeling and PredictionRussian State Agricultural UniversityMoscowRussia
  2. 2.RUDN UniversityMoscowRussia
  3. 3.Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheSeconda Università di NapoliCasertaItaly
  4. 4.Institute of Physico-chemical and Biological Problems in Soil Science, RASPushchino, Moscow RegionRussia
  5. 5.Tuscia UniversityViterboItaly

Personalised recommendations