Round Optimal Concurrent MPC via Strong Simulation

  • Saikrishna Badrinarayanan
  • Vipul Goyal
  • Abhishek Jain
  • Dakshita Khurana
  • Amit Sahai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10677)

Abstract

In this paper, we study the round complexity of concurrently secure multi-party computation (MPC) with super-polynomial simulation (SPS) in the plain model. In the plain model, there are known explicit attacks that show that concurrently secure MPC with polynomial simulation is impossible to achieve; SPS security is the most widely studied model for concurrently secure MPC in the plain model. We obtain the following results:
  • Three-round concurrent MPC with SPS security against Byzantine adversaries, assuming sub-exponentially secure DDH and LWE.

  • Two-round concurrent MPC with SPS security against Byzantine adversaries for input-less randomized functionalities, assuming sub-exponentially secure indistinguishability obfuscation and DDH. In particular, this class includes sampling functionalities that allow parties to jointly sample a secure common reference string for cryptographic applications.

Prior to our work, to the best of our knowledge, concurrent MPC with SPS security required roughly 20 rounds, although we are not aware of any work that even gave an approximation of the constant round complexity sufficient for the multi-party setting. We also improve over the previous best round complexity for the two-party setting, where 5 rounds were needed (Garg, Kiyoshima, and Pandey, Eurocrypt 2017).

To obtain our results, we compile protocols that already achieve security against “semi-malicious” adversaries, to protocols secure against fully malicious adversaries, additionally assuming sub-exponential DDH. Our protocols develop new techniques to use two-round zero-knowledge with super-polynomial strong simulation, defined by Pass (Eurocrypt 2003) and very recently realized by Khurana and Sahai (FOCS 2017). These remain zero-knowledge against adversaries running in time larger than the running time of the simulator.

Notes

Acknowledgements

We thank Ron Rothblum for useful discussions.

References

  1. 1.
    Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_16 CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_29 CrossRefGoogle Scholar
  3. 3.
    Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. IACR Cryptology ePrint Archive 2017, 433 (2017). http://eprint.iacr.org/2017/433
  4. 4.
    Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Berkeley, California, USA, Proceedings, pp. 345–354, 21–24 October 2006. https://doi.org/10.1109/FOCS.2006.21
  5. 5.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Proceedings, pp. 543–552, 23–25 October 2005. https://doi.org/10.1109/SFCS.2005.43
  6. 6.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, USA, pp. 503–513, 13–17 May 1990. http://doi.acm.org/10.1145/100216.100287
  7. 7.
    Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. IACR Cryptology ePrint Archive 2017, 386 (2017). http://eprint.iacr.org/2017/386
  8. 8.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, Las Vegas, Nevada, USA, pp. 541–550, 23–26 October 2010. https://doi.org/10.1109/FOCS.2010.86
  9. 9.
    Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_23 CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_30 CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_4 CrossRefGoogle Scholar
  12. 12.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, pp. 542–552, 5–8 May 1991. http://doi.acm.org/10.1145/103418.103474
  13. 13.
    Garg, S., Goyal, V., Jain, A., Sahai, A.: Concurrently secure computation in constant rounds. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 99–116. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_8 CrossRefGoogle Scholar
  14. 14.
    Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_27 CrossRefGoogle Scholar
  15. 15.
    Garg, S., Kiyoshima, S., Pandey, O.: On the exact round complexity of self-composable two-party computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 194–224. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_7 CrossRefGoogle Scholar
  16. 16.
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_16 CrossRefGoogle Scholar
  17. 17.
    Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_36 CrossRefGoogle Scholar
  18. 18.
    Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing 1987, New York, NY, USA, pp. 218–229 (1987). http://doi.acm.org/10.1145/28395.28420
  20. 20.
    Goyal, V.: Constant round non-malleable protocols using one way functions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, pp. 695–704, 6–8 June 2011. http://doi.acm.org/10.1145/1993636.1993729
  21. 21.
    Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-malleable commitments. In: FOCS (2016)Google Scholar
  22. 22.
    Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, pp. 51–60, 20–23 October 2012 . https://doi.org/10.1109/FOCS.2012.47
  23. 23.
    Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_24 CrossRefGoogle Scholar
  24. 24.
    Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_36 CrossRefGoogle Scholar
  25. 25.
    Khurana, D., Sahai, A.: Two-message non-malleable commitments from standard sub-exponential assumptions. IACR Cryptology ePrint Archive 2017, 291 (2017). http://eprint.iacr.org/2017/291
  26. 26.
    Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_15 CrossRefGoogle Scholar
  27. 27.
    Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, pp. 705–714, 6–8 June 2011. http://doi.acm.org/10.1145/1993636.1993730
  28. 28.
    Lin, H., Pass, R., Soni, P.: Two-round concurrent non-malleable commitment from time-lock puzzles. IACR Cryptology ePrint Archive 2017, 273 (2017). http://eprint.iacr.org/2017/273
  29. 29.
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_31 CrossRefGoogle Scholar
  30. 30.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_18 CrossRefGoogle Scholar
  31. 31.
    Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, Proceedings, Part II, pp. 735–763, 8–12 May 2016. https://doi.org/10.1007/978-3-662-49896-5_26
  32. 32.
    Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, Proceedings, pp. 57–74, 17–21 August 2008. http://dx.doi.org/10.1007/978-3-540-85174-5_4
  33. 33.
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_10 CrossRefGoogle Scholar
  34. 34.
    Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, pp. 232–241, 13–16 June 2004. http://doi.acm.org/10.1145/1007352.1007393
  35. 35.
    Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh, PA, USA, Proceedings, pp. 563–572, 23–25 October 2005. https://doi.org/10.1109/SFCS.2005.27
  36. 36.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, pp. 242–251, 13–16 June 2004. http://doi.acm.org/10.1145/1007352.1007394
  37. 37.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, New York, NY, USA, pp. 543–553, 17–18 October 1999. https://doi.org/10.1109/SFFCS.1999.814628
  38. 38.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: FOCS 2010, pp. 531–540 (2010). https://doi.org/10.1109/FOCS.2010.87
  39. 39.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)Google Scholar
  40. 40.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Saikrishna Badrinarayanan
    • 1
  • Vipul Goyal
    • 2
  • Abhishek Jain
    • 3
  • Dakshita Khurana
    • 1
  • Amit Sahai
    • 1
  1. 1.UCLALos AngelesUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations