Skip to main content

The Human Y-chromosome: Evolutionary Directions and Implications for the Future of “Maleness”

Abstract

The human Y chromosome represents an iconic image of “maleness,” and mutation, deletion, or rearrangement of the Y often lead to attendance in infertility clinics. Its evolutionary history is however also one of gene loss, inversion, and heterochromatin accumulation. There is little argument that the Y chromosome once had the size and gene density of its partner, the X chromosome, and is thus now only a shadow of its former self. The question however revolves around whether we are observing the Y at a point on its way to oblivion, or whether it has evolved effective mechanisms to cling on to life indefinitely. There are two schools of thought: The first is that the Y has persisted for hundreds of millions of years and is going nowhere. It can, it is asserted, outsmart genetic decay without regular meiotic crossing over, and the majority of its genes show signs of evolutionary selection. Palindromic sequences along its length with near 100% identity ensure self-recombination. During its history, it has added at least eight different genes, some of which have expanded in copy number, and the Y has lost no genes since humans and chimpanzees diverged ~6 million years ago. The counterargument is that the Y chromosome is subject to higher rates of variation and inefficient selection and is degrading irreversibly. The Y chromosome in other mammals has undergone lineage-specific degradation and has already disappeared entirely in some rodent lineages, such as spiny rats and mole voles. The argument goes that there is virtually nothing left of the original human Y and that the added part of the chromosome is in fact degrading rapidly. An interesting aside to what should be really only a phenomenon of interest to evolutionary cytogeneticists is that the story often gets conflated in the popular press to assume that the alleged Y chromosome demise automatically means the demise of males. Fear not, it doesn’t. Males are here to stay, and the argument is about this strange looking chromosome alone. Everyone agrees that the Y has degraded significantly, it is now well established that it has evolved some clever mechanisms to put the brakes on. The prevailing question is how effective those brakes actually are. Even experts can’t agree and a straw poll at the 2011 International Chromosome Conference suggested an even split overall, but with more men favoring the “Y remaining” model and more women the “Y leaving” scenario.

Keywords

  • Y chromosome
  • Evolution
  • Sex determination
  • Dosage compensation
  • Palindromes

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70497-5_13
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-70497-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)

References

  1. Organ CL, Janes DE. Evolution of sex chromosomes in Sauropsida. Integr Comp Biol. 2008;48(4):512.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Ross JA, et al. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 2009;5(2):e1000391.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Campos-Ramos R, et al. Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica. 2001;111(1):143–53.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Griffin D, et al. Early origins of the X and Y chromosomes: lessons from tilapia. Cytogenet Genome Res. 2000;99(1–4):157–63.

    Google Scholar 

  5. Harvey S, et al. Karyotype evolution in Tilapia: mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus× O. karongae hybrids. Genetica. 2002;115(2):169–77.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Takehana Y, et al. Evolution of ZZ/ZW and XX/XY sex-determination systems in the closely related medaka species, Oryzias hubbsi and O. dancena. Chromosoma. 2007;116(5):463–70.

    PubMed  CrossRef  Google Scholar 

  7. Ogata M, et al. The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity. 2007;100(1):92–9.

    PubMed  CrossRef  Google Scholar 

  8. Ohno S. Sex chromosomes and sex-linked genes. Chromosomes sexuels et genes lies au sexe, 1969.

    Google Scholar 

  9. Takagi N, Sasaki M. A phylogenetic study of bird karyotypes. Chromosoma. 1974;46(1):91–120.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Nishida-Umehara C, et al. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res. 2007;15(6):721–34.

    CAS  PubMed  CrossRef  Google Scholar 

  11. Bachtrog D, Charlesworth B. Reduced adaptation of a non-recombining neo-Y chromosome. Nature. 2002;416(6878):323–6.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Benatti TR, et al. A neo-sex chromosome that drives postzygotic sex determination in the Hessian fly (Mayetiola destructor). Genetics. 2010;184(3):769.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Liu Z, et al. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature. 2004;427(6972):348–52.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Filatov DA. Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes. Genetics. 2005;170(2):975.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Kondo M, et al. Evolutionary origin of the medaka Y chromosome. Curr Biol. 2004;14(18):1664–9.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Peichel CL, et al. The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr Biol. 2004;14(16):1416–24.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Zhou Q, et al. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 2008;9(6):R98.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Pala I, et al. Evidence of a neo-sex chromosome in birds. Heredity. 2012;108:264–72.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Carvalho AB, Clark AG. Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y. Science. 2005;307(5706):108.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Graves JAM. The origin and function of the mammalian Y chromosome and Y borne genes–an evolving understanding. Bioessays. 1995;17(4):311–20.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Skaletsky H, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423(6942):825–37.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Ross MT, et al. The DNA sequence of the human X chromosome. Nature. 2005;434(7031):325–37.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Hughes JF, et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature. 2010;463(7280):536–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T, Fulton RS, Dugan S, Ding Y, Buhay CJ, Kremitzki C, Wang Q, Shen H, Holder M, Villasana D, Nazareth LV, Cree A, Courtney L, Veizer J, Kotkiewicz H, Cho TJ, Koutseva N, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature. 2012;483(7387):82–6.

    Google Scholar 

  25. Rice WR. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics. 1987;116(1):161.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Page DC, et al. Occurrence of a transposition from the X-chromosome long arm to the Y-chromosome short arm during human evolution. Nature. 1984;311(5982):119–23.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Saxena R, et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet. 1996;14(3):292–9.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Lahn BT, Page DC. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet. 1999;21:429–33.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Rozen S, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003;423(6942):873–6.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Watanabe H, et al. DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature. 2004;429(6990):382–8.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Hughes JF, et al. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature. 2005;437(7055):100–3.

    PubMed  CrossRef  Google Scholar 

  32. Dixson AF. Primate sexuality: comparative studies of the prosimians, monkeys, apes, and human beings. Oxford: Oxford University Press; 1998.

    Google Scholar 

  33. Connallon T, Clark AG. Gene duplication, gene conversion and the evolution of the Y chromosome. Genetics. 2010;186(1):277.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Marais GAB, Campos PRA, Gordo I. Can intra-Y gene conversion oppose the degeneration of the human Y chromosome? A simulation study. Genome Biol Evol. 2010;2:347.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  35. Rozen S, et al. Remarkably little variation in proteins encoded by the Y chromosome’s single-copy genes, implying effective purifying selection. Am J Huma Genet. 2009;85(6):923–8.

    CAS  CrossRef  Google Scholar 

  36. Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124(5):901–14.

    PubMed  CrossRef  Google Scholar 

  37. Graves JAM. Human Y chromosome, sex determination, and spermatogenesis—a feminist view. Biol Reprod. 2000;63(3):667.

    CrossRef  Google Scholar 

  38. Aitken RJ, Graves JAM. The future of sex. Nature. 2002;415:963–4.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Shimmin LC, Chang BHJ, Li WH. Male-driven evolution of DNA sequences. Nature. 1993;362(6422):745–7.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Charlesworth B, Charlesworth D. The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci. 2000;355(1403):1563.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  41. Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41(4):911–4.

    PubMed  CrossRef  Google Scholar 

  42. Graves JAM. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet. 2008;42:565–86.

    CrossRef  Google Scholar 

  43. Bachtrog D. The temporal dynamics of processes underlying Y chromosome degeneration. Genetics. 2008;179(3):1513.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  44. Sykes B. Adam’s curse: a future without men. New York: WW Norton & Company; 2004.

    Google Scholar 

  45. Kuroiwa A, et al. The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma. 2010;119(5):519–26.

    PubMed  CrossRef  Google Scholar 

  46. Murata C, et al. Multiple copies of SRY on the large Y chromosome of the Okinawa spiny rat, Tokudaia muenninki. Chromosome Res. 2010;119:1–12.

    CrossRef  Google Scholar 

  47. Graves JAM. Recycling the Y chromosome. Science. 2005;307(5706):50.

    PubMed  CrossRef  Google Scholar 

  48. Lingenfelter PA, et al. Expression and conservation of processed copies of the RBMX gene. Mamm Genome. 2001;12(7):538–45.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren K. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Griffin, D.K., Ellis, P.J.I. (2018). The Human Y-chromosome: Evolutionary Directions and Implications for the Future of “Maleness”. In: Palermo, G., Sills, E. (eds) Intracytoplasmic Sperm Injection. Springer, Cham. https://doi.org/10.1007/978-3-319-70497-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70497-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70496-8

  • Online ISBN: 978-3-319-70497-5

  • eBook Packages: MedicineMedicine (R0)