Skip to main content

Particle Detectors

  • Chapter
  • First Online:
  • 1879 Accesses

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

Abstract

The subject of the second chapter is the interaction of particles with matter. The first section discusses the mechanism by which various types of particles interact with different media. Particular emphasis is given to the concept of energy loss and range in matter. The second section focuses on the experimental techniques for particle identification . The third section is dedicated to the functioning of particle detectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd edn. (Springer, Berlin, 1993)

    Google Scholar 

  2. C. Patrignani et al., (Particle Data Group). Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  3. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New Jersey, 1999)

    Google Scholar 

  4. Yung-Su Tsai, Rev. Mod. Phys 46, 815 (1974)

    Article  ADS  Google Scholar 

  5. http://pdg.lbl.gov/2016/AtomicNuclearProperties

  6. National Institute of Standards and Technology. XCOM: Photon Cross Sections Database (2012). http://nist.gov/pml/data/xcom/index.cfm

  7. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New Jersey, 2010)

    Google Scholar 

  8. F. Sauli, Gaseous Radiation Detectors : Fundamentals and Applications (Cambridge University, Cambridge, 2014)

    Google Scholar 

  9. A. Thompson et al., X-ray Data Booklet, LBNL/PUB-490 Rev.3 (2009)

    Google Scholar 

  10. D.E. Groom et al., Atomic Data Nucl. Data Tab. 78, 183 (2001). https://doi.org/10.1006/adnd.2001.0861

  11. A.A. Kochanov et al., Astropart. Phys. 30, 219233 (2008). https://doi.org/10.1016/j.astropartphys.2008.09.008

  12. ALEPH Collaboration Nucl, Instr. Methods A 360, 481 (1995)

    Article  ADS  Google Scholar 

  13. M. Peskin, D.V. Schroeder, An introduction to Quantum Field Theory (Advanced Book Program, Westview Press, 1995)

    Google Scholar 

  14. CMS Collaboration, Accepted by JINST, CMS-PRF-14-001, CERN-EP-2017-110. arXiv:1706.04965 (2017)

  15. H. Primakoff, S. Rosen, Rep. Prog. Phys. 22, 121–166 (1959)

    Article  ADS  Google Scholar 

  16. Stopping-power and range tables for electrons, ICRU Report No. 37 (1984)

    Google Scholar 

  17. T. Tabarelli de Fatis, Eur. Phys. J. C 65, 359 (2010). https://doi.org/10.1140/epjc/s10052-009-1207-8

  18. K.S. Hirata et al., Phys. Rev. D 38, 448–457 (1988). https://doi.org/10.1103/PhysRevD.38.448

  19. R. Cahn, G. Goldhaber, The Experimental Foundations of Particle Physics, 2nd edn. (Cambridge University, Cambridge, 1989)

    Google Scholar 

  20. C.W. Fabjan, F. Gianotti, Rev. Mod. Phys. 75, 1243–1286 (2003). https://doi.org/10.1103/RevModPhys. 75.1243

  21. L. Rossi et al., Pixel Detectors (Spinger, Berlin, 2006)

    Google Scholar 

  22. W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (Springer, Berlin, 2008)

    Google Scholar 

  23. R. Frühwirth et al., Data Analysis Techniques for High-Energy Physics, 2nd edn. (Cambridge Press, Cambridge, 2000)

    Google Scholar 

  24. ATLAS Collaboration, JINST 11 P04008 (2016). https://doi.org/10.1088/1748-0221/11/04/P04008

  25. C.M.S. Collaboration, JINST 8, P04013 (2013). https://doi.org/10.1088/1748-0221/8/04/P04013

  26. L. Rolandi, F. Ragusa, New J. Phys. 9, 336 (2007). https://doi.org/10.1088/1367-2630/9/9/336

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bianchini .

Appendix 1

Appendix 1

The computer program below illustrates the numerical evaluation of the information \(I_{\varepsilon _\pi }\) from Problem 2.28. The algorithm approximates the Rieman integral by the finite sum of rectangles:

$$ \int dx \, f(x) \approx \sum _i \, f \left( \frac{x_{i+1}-x_i}{2} \right) \cdot \varDelta x $$

The integral to be approximated is given by:

$$\begin{aligned} I_{\varepsilon _\pi } = \text{ E }\left[ - \frac{\partial ^2 f(x, \varepsilon _\pi ) }{\partial ^2 \varepsilon _\pi } \right] \equiv \int _{-\infty }^{+\infty }dt \, f(t, \varepsilon _\pi ) \left[ -\frac{\partial ^2 \ln f(x, \varepsilon _\pi ) }{\partial ^2 \varepsilon _\pi } \right] , \end{aligned}$$
(2.139)

with:

$$\begin{aligned} \frac{\partial \ln f(x, \varepsilon _\pi ) }{\partial \varepsilon _\pi } = \frac{\mathscr {N}(t; \; t_\pi , \sigma _t) - \mathscr {N}(t; \; t_K, \sigma _t) }{ f(t, \varepsilon _\pi ) } \end{aligned}$$
(2.140)
$$\begin{aligned} \frac{\partial ^2 \ln f(x, \varepsilon _\pi ) }{\partial ^2 \varepsilon _\pi } = -\frac{\left[ \mathscr {N}(t; \; t_\pi , \sigma _t) - \mathscr {N}(t; \; t_K, \sigma _t) \right] ^2}{ f(t, \varepsilon _\pi )^2} \end{aligned}$$
(2.141)
figure bc

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchini, L. (2018). Particle Detectors. In: Selected Exercises in Particle and Nuclear Physics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-70494-4_2

Download citation

Publish with us

Policies and ethics