Skip to main content

5-HT2A Receptor Heterodimerization

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 32))

Abstract

Interaction of serotonin 5-HT2A receptor with other G protein-coupled receptors (GPCRs) have been shown at the behavioral and/or electrophysiological level. In the present chapter evidence for direct physical interactions of this receptor with various GPCRs have been described. The most interesting in the context of antipsychotic drug action mechanism is the interaction of the serotonin 5-HT2A receptor with dopamine D2 receptor, which has been shown both in vitro as well as in the native brain tissue. On the other hand, new understanding of hallucinogenic drugs has been proposed by providing data which demonstrate the formation of heterocomplexes by the 5-HT2A receptor with the metabotropic glutamatergic receptor mGluR2. Methodology used in GPCRs heterodimerization studies has evolved, from radioligand binding, receptor crosslinking, receptor complementation, or co-immunoprecipitation approach to biophysical techniques based on resonance energy transfer—each having their pros and cons, however their use still provides new exciting data concerning the complexity of GPCRs physical interactions, which broaden basal knowledge as well as offer new targets for pharmacological intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE (2013) Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 84(4):630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA et al (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59(1):5–13

    Article  CAS  PubMed  Google Scholar 

  3. Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P et al (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299

    Article  PubMed  Google Scholar 

  4. Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103(2):475–486

    Article  PubMed  Google Scholar 

  6. Marek GJ (2003) Behavioral evidence for mu-opioid and 5-HT2A receptor interactions. Eur J Pharmacol 474(1):77–83

    Article  CAS  PubMed  Google Scholar 

  7. Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453(1–2):315–328

    Article  CAS  PubMed  Google Scholar 

  8. Tempel A, Zukin RS (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci U S A 84(12):4308–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Body S, Cheung TH, Bezzina G, Asgari K, Fone KC, Glennon JC et al (2006) Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189(3):331–343

    Article  CAS  PubMed  Google Scholar 

  10. Moser PC, Moran PM, Frank RA, Kehne JH (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav Brain Res 73(1–2):163–167

    CAS  PubMed  Google Scholar 

  11. Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864(2):176–185

    Article  CAS  PubMed  Google Scholar 

  12. Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111(1):163–176

    Article  CAS  PubMed  Google Scholar 

  13. Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO et al (2013) G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 521:281–294

    Article  CAS  PubMed  Google Scholar 

  14. Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61(4):770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284

    Article  CAS  PubMed  Google Scholar 

  16. Franklin JM, Carrasco GA (2012) Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT(2A) and dopamine D(2) receptors in rat prefrontal cortex. J Psychopharmacol 26(10):1333–1347

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuellar F et al (2012) Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem 287(53):44301–44319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452(7183):93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147(5):1011–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  CAS  PubMed  Google Scholar 

  21. Moreno JL, Holloway T, Albizu L, Sealfon SC, Gonzalez-Maeso J (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493(3):76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M et al (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62(7):2184–2191

    Article  CAS  PubMed  Google Scholar 

  23. Delille HK, Mezler M, Marek GJ (2013) The two faces of the pharmacological interaction of mGlu2 and 5-HT(2)A—relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 70:296–305

    Article  CAS  PubMed  Google Scholar 

  24. Perez-Aguilar JM, Shan J, LeVine MV, Khelashvili G, Weinstein H (2014) A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 136(45):16044–16054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T et al (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5(3):131–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T et al (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407(6807):971–977

    Article  CAS  PubMed  Google Scholar 

  27. Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D et al (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21(4):1189–1202

    CAS  PubMed  Google Scholar 

  28. Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA (2000) Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 23(4 Suppl):S60–S77

    Article  CAS  PubMed  Google Scholar 

  29. Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16(2):252–259

    Article  CAS  PubMed  Google Scholar 

  30. Overton MC, Chinault SL, Blumer KJ (2003) Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor. J Biol Chem 278(49):49369–49377

    Article  CAS  PubMed  Google Scholar 

  31. Lukasiewicz S, Faron-Gorecka A, Dobrucki J, Polit A, Dziedzicka-Wasylewska M (2009) Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. FEBS J 276(3):760–775

    Article  CAS  PubMed  Google Scholar 

  32. Lukasiewicz S, Polit A, Kedracka-Krok S, Wedzony K, Mackowiak M, Dziedzicka-Wasylewska M (2010) Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim Biophys Acta 1803(12):1347–1358

    Article  CAS  PubMed  Google Scholar 

  33. Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H (2012) Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput Biol 8(4):e1002473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vinals X, Moreno E, Lanfumey L, Cordomi A, Pastor A, de La Torre R et al (2015) Cognitive impairment induced by Delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194

    Article  PubMed  PubMed Central  Google Scholar 

  35. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF et al (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT((2)A) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401(4):605–610

    Article  CAS  PubMed  Google Scholar 

  36. Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y et al (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230

    Article  CAS  PubMed  Google Scholar 

  37. Jackson SN, Wang HY, Yergey A, Woods AS (2006) Phosphate stabilization of intermolecular interactions. J Proteome Res 5(1):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272(46):29229–29237

    Article  CAS  PubMed  Google Scholar 

  39. Ciruela F, Casado V, Mallol J, Canela EI, Lluis C, Franco R (1995) Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 42(6):818–828

    Article  CAS  PubMed  Google Scholar 

  40. AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407(6800):94–98

    Article  CAS  PubMed  Google Scholar 

  41. AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7(9):1003–1009

    Article  CAS  PubMed  Google Scholar 

  42. Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531(2):299–303

    Article  CAS  PubMed  Google Scholar 

  43. Gama L, Wilt SG, Breitwieser GE (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 276(42):39053–39059

    Article  CAS  PubMed  Google Scholar 

  44. Jaeger WC, Armstrong SP, Hill SJ, Pfleger KD (2014) Biophysical detection of diversity and bias in GPCR function. Front Endocrinol (Lausanne) 5:26

    Google Scholar 

  45. Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E et al (2012) BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol (Lausanne) 3:92

    Google Scholar 

  46. Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33(3):372–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfleger KD, Eidne KA (2005) Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385(Pt 3):625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71(4):1015–1029

    Article  CAS  PubMed  Google Scholar 

  49. Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275(11):7862–7869

    Article  CAS  PubMed  Google Scholar 

  50. Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288(5463):154–157

    Article  CAS  PubMed  Google Scholar 

  51. Ciruela F, Fernandez-Duenas V, Jacobson KA (2015) Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology 98:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Madiraju C, Welsh K, Cuddy MP, Godoi PH, Pass I, Ngo T et al (2012) TR-FRET-based high-throughput screening assay for identification of UBC13 inhibitors. J Biomol Screen 17(2):163–176

    Article  CAS  PubMed  Google Scholar 

  53. Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329(2):253–262

    Article  CAS  PubMed  Google Scholar 

  54. Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE (2006) Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem 281(37):27109–27116

    Article  CAS  PubMed  Google Scholar 

  55. Ayoub MA, Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10(1):44–52

    Article  CAS  PubMed  Google Scholar 

  56. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M et al (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97(7):3684–3689

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6(8):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28(8):407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques 51(2):111–118

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO et al (2012) Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 71(1):84–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Dziedzicka-Wasylewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Łukasiewicz, S., Błasiak, E., Dziedzicka-Wasylewska, M. (2018). 5-HT2A Receptor Heterodimerization. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_3

Download citation

Publish with us

Policies and ethics