βArrestins: Ligand-Directed Regulators of 5-HT2A Receptor Trafficking and Signaling Events

Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

βArrestins are scaffolding and regulatory proteins that both modify and mediate G protein coupled receptor responsiveness by desensitizing G protein signaling pathways and facilitating receptor internalization and alternate downstream signaling cascades. This chapter details the studies that demonstrate a role for βarrestin2 in regulating 5-HT2A receptor responsiveness in vitro and in vivo. The studies presented herein demonstrate that while the 5-HT2A receptor is capable of being regulated through interactions with GRKs and βarrestins, interactions with other proteins can facilitate receptor desensitization and internalization through non-βarrestin-mediated mechanisms. Moreover, the pathways utilized for each of these events are determined by both the complement of intracellular proteins expressed in residence with the 5-HT2A receptor and the agonist acting at the receptor.

Keywords

βarrestins G protein receptor kinases Functional selectivity Internalization G protein coupling MAP kinase 

References

  1. 1.
    Gurevich VV, Gurevich EV, Cleghorn WM (2008) Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 186:15–37.  https://doi.org/10.1007/978-3-540-72843-6_2 CrossRefGoogle Scholar
  2. 2.
    Black JB, Premont RT, Daaka Y (2016) Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin Cell Dev Biol 50:95–104.  https://doi.org/10.1016/j.semcdb.2015.12.015 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133(1):40–69.  https://doi.org/10.1016/j.pharmthera.2011.08.001 PubMedCrossRefGoogle Scholar
  4. 4.
    Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534.  https://doi.org/10.1146/annurev.physiol.69.022405.154731 PubMedCrossRefGoogle Scholar
  5. 5.
    Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272(44):27497–27500PubMedCrossRefGoogle Scholar
  6. 6.
    Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ (2008) Beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 283(9):5669–5676PubMedCrossRefGoogle Scholar
  7. 7.
    Groer CE, Tidgewell K, Moyer RA, Harding WW, Rothman RB, Prisinzano TE, Bohn LM (2007) An opioid agonist that does not induce micro-opioid receptor—arrestin interactions or receptor internalization. Mol Pharmacol 71(2):549–557PubMedCrossRefGoogle Scholar
  8. 8.
    Hamdan FF, Audet M, Garneau P, Pelletier J, Bouvier M (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10(5):463–475PubMedCrossRefGoogle Scholar
  9. 9.
    van Der Lee MM, Bras M, van Koppen CJ, Zaman GJ (2008) beta-Arrestin recruitment assay for the identification of agonists of the sphingosine 1-phosphate receptor EDG1. J Biomol Screen 13(10):986–998.  https://doi.org/10.1177/1087057108326144. [pii]: 1087057108326144CrossRefGoogle Scholar
  10. 10.
    von Degenfeld G, Wehrman TS, Hammer MM, Blau HM (2007) A universal technology for monitoring G-protein-coupled receptor activation in vitro and noninvasively in live animals. FASEB J 21(14):3819–3826CrossRefGoogle Scholar
  11. 11.
    Gurevich VV, Gurevich EV (2015a) Analyzing the roles of multi-functional proteins in cells: the case of arrestins and GRKs. Crit Rev Biochem Mol Biol 50(5):440–452.  https://doi.org/10.3109/10409238.2015.1067185 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498PubMedCrossRefGoogle Scholar
  13. 13.
    Conner DA, Mathier MA, Mortensen RM, Christe M, Vatner SF, Seidman CE, Seidman JG (1997) beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res 81(6):1021–1026PubMedCrossRefGoogle Scholar
  14. 14.
    Schmid CL, Bohn LM (2009) Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther 121(3):285–293.  https://doi.org/10.1016/j.pharmthera.2008.11.005 PubMedCrossRefGoogle Scholar
  15. 15.
    Scott MG, Benmerah A, Muntaner O, Marullo S (2002) Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J Biol Chem 277(5):3552–3559.  https://doi.org/10.1074/jbc.M106586200 PubMedCrossRefGoogle Scholar
  16. 16.
    Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ (2001) beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci U S A 98(4):1601–1606PubMedPubMedCentralGoogle Scholar
  17. 17.
    Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275(22):17201–17210.  https://doi.org/10.1074/jbc.M910348199. [pii]: M910348199PubMedCrossRefGoogle Scholar
  18. 18.
    Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci U S A 104(29):12011–12016.  https://doi.org/10.1073/pnas.0704849104 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV (2012) Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLoS One 7(11):e48912.  https://doi.org/10.1371/journal.pone.0048912 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110(3):465–502.  https://doi.org/10.1016/j.pharmthera.2005.09.008. [pii]: S0163-7258(05)00211-1PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ (1992) Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J Biol Chem 267(12):8558–8564PubMedGoogle Scholar
  22. 22.
    Mundell SJ, Loudon RP, Benovic JL (1999) Characterization of G protein-coupled receptor regulation in antisense mRNA-expressing cells with reduced arrestin levels. Biochemistry 38(27):8723–8732.  https://doi.org/10.1021/bi990361v. [pii]: bi990361vPubMedCrossRefGoogle Scholar
  23. 23.
    Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J (2002) beta-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J Biol Chem 277(2):1292–1300.  https://doi.org/10.1074/jbc.M109160200. [pii]: M109160200PubMedCrossRefGoogle Scholar
  24. 24.
    Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267(25):17882–17890PubMedGoogle Scholar
  25. 25.
    Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ (2003) Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 100(4):1740–1744PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ferguson SS, Downey WE 3rd, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247):363–366PubMedCrossRefGoogle Scholar
  27. 27.
    Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383(6599):447–450PubMedCrossRefGoogle Scholar
  28. 28.
    Kim YM, Benovic JL (2002) Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem 277(34):30760–30768.  https://doi.org/10.1074/jbc.M204528200. [pii]: M204528200PubMedCrossRefGoogle Scholar
  29. 29.
    Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96(7):3712–3717PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gurevich VV, Gurevich EV (2015b) Arrestins: critical players in trafficking of many GPCRs. Prog Mol Biol Transl Sci 132:1–14.  https://doi.org/10.1016/bs.pmbts.2015.02.010 PubMedCrossRefGoogle Scholar
  31. 31.
    Shenoy SK, Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278(16):14498–14506.  https://doi.org/10.1074/jbc.M209626200. [pii]: M209626200PubMedCrossRefGoogle Scholar
  32. 32.
    Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274(45):32248–32257PubMedCrossRefGoogle Scholar
  33. 33.
    Thomsen AR, Plouffe B, Cahill TJ 3rd, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Berton B, Heydenreich FM, Sunahara RK, Skiniotis G, Bouvier M, Lefkowitz RJ (2016) GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166(4):907–919.  https://doi.org/10.1016/j.cell.2016.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283(5):2949–2961.  https://doi.org/10.1074/jbc.M707009200 PubMedCrossRefGoogle Scholar
  35. 35.
    Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283(5402):655–661PubMedCrossRefGoogle Scholar
  36. 36.
    Cianfrocca R, Rosano L, Spinella F, Di Castro V, Natali PG, Bagnato A (2010) Beta-arrestin-1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Can J Physiol Pharmacol 88(8):796–801.  https://doi.org/10.1139/y10-052. [pii]: y10-052PubMedCrossRefGoogle Scholar
  37. 37.
    Daaka Y, Luttrell LM, Ahn S, Della Rocca GJ, Ferguson SS, Caron MG, Lefkowitz RJ (1998) Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J Biol Chem 273(2):685–688PubMedCrossRefGoogle Scholar
  38. 38.
    Sun Y, Cheng Z, Ma L, Pei G (2002) Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 277(51):49212–49219.  https://doi.org/10.1074/jbc.M207294200. [pii]: M207294200PubMedCrossRefGoogle Scholar
  39. 39.
    McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290(5496):1574–1577PubMedCrossRefGoogle Scholar
  40. 40.
    Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276(30):27770–27777.  https://doi.org/10.1074/jbc.M102264200. [pii]: M102264200PubMedCrossRefGoogle Scholar
  41. 41.
    Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525.  https://doi.org/10.1074/jbc.M405878200. [pii]: M405878200PubMedCrossRefGoogle Scholar
  42. 42.
    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273.  https://doi.org/10.1016/j.cell.2005.05.012 PubMedCrossRefGoogle Scholar
  43. 43.
    Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G (2009) Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 457(7233):1146–1149.  https://doi.org/10.1038/nature07617. [pii]: nature07617PubMedCrossRefGoogle Scholar
  44. 44.
    Urs NM, Daigle TL, Caron MG (2011) A dopamine D1 receptor-dependent beta-arrestin signaling complex potentially regulates morphine-induced psychomotor activation but not reward in mice. Neuropsychopharmacology 36(3):551–558.  https://doi.org/10.1038/npp.2010.186. [pii]: npp2010186PubMedCrossRefGoogle Scholar
  45. 45.
    Labasque M, Reiter E, Becamel C, Bockaert J, Marin P (2008) Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signaling. Mol Biol Cell 19(11):4640–4650.  https://doi.org/10.1091/mbc.E08-04-0422 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Pineyro G (2003) Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 100(20):11406–11411.  https://doi.org/10.1073/pnas.1936664100. [pii]: 1936664100PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 61(4):768–777PubMedCrossRefGoogle Scholar
  48. 48.
    Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 100(19):10782–10787.  https://doi.org/10.1073/pnas.1834556100. [pii]: 1834556100PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302.  https://doi.org/10.1124/jpet.110.173948 PubMedCrossRefGoogle Scholar
  50. 50.
    Shukla AK, Singh G, Ghosh E (2014) Emerging structural insights into biased GPCR signaling. Trends Biochem Sci 39(12):594–602.  https://doi.org/10.1016/j.tibs.2014.10.001 PubMedCrossRefGoogle Scholar
  51. 51.
    Kenakin T (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4(11):919–927.  https://doi.org/10.1038/nrd1875. [pii]: nrd1875PubMedCrossRefGoogle Scholar
  52. 52.
    Kenakin T (2007) Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 28(8):407–415.  https://doi.org/10.1016/j.tips.2007.06.009. [pii]: S0165-6147(07)00155-1PubMedCrossRefGoogle Scholar
  53. 53.
    Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386.  https://doi.org/10.1038/nrd3024 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13.  https://doi.org/10.1124/jpet.106.104463 PubMedCrossRefGoogle Scholar
  55. 55.
    Bohn LM (2009) Selectivity for G protein or arrestin-mediated signaling. In: Neve K (ed) Functional selectivity of G protein-coupled receptor ligands, 1st edn. Humana Press, Totowa, pp 71–85CrossRefGoogle Scholar
  56. 56.
    Gelber EI, Kroeze WK, Willins DL, Gray JA, Sinar CA, Hyde EG, Gurevich V, Benovic J, Roth BL (1999) Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins. J Neurochem 72(5):2206–2214PubMedCrossRefGoogle Scholar
  57. 57.
    Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL (2001) The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem 276(11):8269–8277.  https://doi.org/10.1074/jbc.M006968200 PubMedCrossRefGoogle Scholar
  58. 58.
    Bhattacharya A, Sankar S, Panicker MM (2010) Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions. J Neurochem 112(3):723–732.  https://doi.org/10.1111/j.1471-4159.2009.06493.x. [pii]: JNC6493PubMedCrossRefGoogle Scholar
  59. 59.
    Bohn LM, Schmid CL (2010) Serotonin receptor signaling and regulation via beta-arrestins. Crit Rev Biochem Mol Biol 45(6):555–566.  https://doi.org/10.3109/10409238.2010.516741 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schmid CL, Streicher JM, Meltzer HY, Bohn LM (2014) Clozapine acts as an agonist at serotonin 2A receptors to counter MK-801-induced behaviors through a betaarrestin2-independent activation of Akt. Neuropsychopharmacology 39(8):1902–1913.  https://doi.org/10.1038/npp.2014.38 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Blough BE, Landavazo A, Decker AM, Partilla JS, Baumann MH, Rothman RB (2014) Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes. Psychopharmacology 231(21):4135–4144.  https://doi.org/10.1007/s00213-014-3557-7 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cornea-Hebert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, Descarries L (2002) Similar ultrastructural distribution of the 5-HT(2A) serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 113(1):23–35PubMedCrossRefGoogle Scholar
  63. 63.
    Gurevich EV, Benovic JL, Gurevich VV (2002) Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109(3):421–436. [pii]: S0306452201005115PubMedCrossRefGoogle Scholar
  64. 64.
    Miner LA, Backstrom JR, Sanders-Bush E, Sesack SR (2003) Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116(1):107–117PubMedCrossRefGoogle Scholar
  65. 65.
    Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27(1):79–82.  https://doi.org/10.1002/(SICI)1098-2396(199709)27:1<79::AID-SYN8>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  66. 66.
    Schmid CL, Bohn LM (2010) Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 30(40):13513–13524.  https://doi.org/10.1523/JNEUROSCI.1665-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ivins KJ, Molinoff PB (1991) Desensitization and down-regulation of 5-HT2 receptors in P11 cells. J Pharmacol Exp Ther 259(1):423–429PubMedGoogle Scholar
  68. 68.
    Roth BL, Palvimaki EP, Berry S, Khan N, Sachs N, Uluer A, Choudhary MS (1995) 5-Hydroxytryptamine2A (5-HT2A) receptor desensitization can occur without down-regulation. J Pharmacol Exp Ther 275(3):1638–1646PubMedGoogle Scholar
  69. 69.
    Gray JA, Compton-Toth BA, Roth BL (2003b) Identification of two serine residues essential for agonist-induced 5-HT2A receptor desensitization. Biochemistry 42(36):10853–10862.  https://doi.org/10.1021/bi035061z PubMedCrossRefGoogle Scholar
  70. 70.
    Karaki S, Becamel C, Murat S, Mannoury la Cour C, Millan MJ, Prezeau L, Bockaert J, Marin P, Vandermoere F (2014) Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13:1273–1285Google Scholar
  71. 71.
    Gray JA, Sheffler DJ, Bhatnagar A, Woods JA, Hufeisen SJ, Benovic JL, Roth BL (2001) Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol 60(5):1020–1030PubMedCrossRefGoogle Scholar
  72. 72.
    Hanley NR, Hensler JG (2002) Mechanisms of ligand-induced desensitization of the 5-hydroxytryptamine(2A) receptor. J Pharmacol Exp Ther 300(2):468–477PubMedCrossRefGoogle Scholar
  73. 73.
    Krupnick JG, Santini F, Gagnon AW, Keen JH, Benovic JL (1997) Modulation of the arrestin-clathrin interaction in cells. Characterization of beta-arrestin dominant-negative mutants. J Biol Chem 272(51):32507–32512PubMedCrossRefGoogle Scholar
  74. 74.
    Kong G, Penn R, Benovic JL (1994) A beta-adrenergic receptor kinase dominant negative mutant attenuates desensitization of the beta 2-adrenergic receptor. J Biol Chem 269(18):13084–13087PubMedGoogle Scholar
  75. 75.
    Berg KA, Stout BD, Maayani S, Clarke WP (2001) Differences in rapid desensitization of 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptor-mediated phospholipase C activation. J Pharmacol Exp Ther 299(2):593–602PubMedGoogle Scholar
  76. 76.
    Franklin JM, Carrasco GA (2015) Cocaine potentiates multiple 5-HT2A receptor signaling pathways and is associated with decreased phosphorylation of 5-HT2A receptors in vivo. J Mol Neurosci 55(3):770–777.  https://doi.org/10.1007/s12031-014-0419-z PubMedCrossRefGoogle Scholar
  77. 77.
    Vouret-Craviari V, Auberger P, Pouyssegur J, Van Obberghen-Schilling E (1995) Distinct mechanisms regulate 5-HT2 and thrombin receptor desensitization. J Biol Chem 270(9):4813–4821PubMedCrossRefGoogle Scholar
  78. 78.
    Sheffler DJ, Kroeze WK, Garcia BG, Deutch AY, Hufeisen SJ, Leahy P, Bruning JC, Roth BL (2006) p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 103(12):4717–4722.  https://doi.org/10.1073/pnas.0600585103. [pii]: 0600585103PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Strachan RT, Sheffler DJ, Willard B, Kinter M, Kiselar JG, Roth BL (2009) Ribosomal S6 kinase 2 directly phosphorylates the 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor, thereby modulating 5-HT2A signaling. J Biol Chem 284(9):5557–5573.  https://doi.org/10.1074/jbc.M805705200. [pii]: M805705200PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Strachan RT, Sciaky N, Cronan MR, Kroeze WK, Roth BL (2010) Genetic deletion of p90 ribosomal S6 kinase 2 alters patterns of 5-hydroxytryptamine 2A serotonin receptor functional selectivity. Mol Pharmacol 77(3):327–338.  https://doi.org/10.1124/mol.109.061440. [pii]: mol.109.061440PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Berry SA, Shah MC, Khan N, Roth BL (1996) Rapid agonist-induced internalization of the 5-hydroxytryptamine2A receptor occurs via the endosome pathway in vitro. Mol Pharmacol 50(2):306–313PubMedGoogle Scholar
  82. 82.
    Willins DL, Alsayegh L, Berry SA, Backstrom JR, Sanders-Bush E, Friedman L, Khan N, Roth BL (1998) Serotonergic antagonist effects on trafficking of serotonin 5-HT2A receptors in vitro and in vivo. Ann N Y Acad Sci 861:121–127PubMedCrossRefGoogle Scholar
  83. 83.
    Orsini MJ, Benovic JL (1998) Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms. J Biol Chem 273(51):34616–34622PubMedCrossRefGoogle Scholar
  84. 84.
    Gray-Keller MP, Detwiler PB, Benovic JL, Gurevich VV (1997) Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion. Biochemistry 36(23):7058–7063.  https://doi.org/10.1021/bi963110k. [pii]: bi963110kPubMedCrossRefGoogle Scholar
  85. 85.
    Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270(2):720–731PubMedCrossRefGoogle Scholar
  86. 86.
    Kovoor A, Celver J, Abdryashitov RI, Chavkin C, Gurevich VV (1999) Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells. J Biol Chem 274(11):6831–6834PubMedCrossRefGoogle Scholar
  87. 87.
    Gray JA, Bhatnagar A, Gurevich VV, Roth BL (2003a) The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. Mol Pharmacol 63(5):961–972PubMedCrossRefGoogle Scholar
  88. 88.
    Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci U S A 105(3):1079–1084.  https://doi.org/10.1073/pnas.0708862105 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209.  https://doi.org/10.1002/(SICI)1096-9861(19990628)409:2<187::AID-CNE2>3.0.CO;2-P PubMedCrossRefGoogle Scholar
  90. 90.
    Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84(4):1341–1379.  https://doi.org/10.1152/physrev.00046.2003. [pii]: 84/4/1341PubMedCrossRefGoogle Scholar
  91. 91.
    Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6(2):112–126.  https://doi.org/10.1038/nrm1571. [pii]: nrm1571PubMedCrossRefGoogle Scholar
  92. 92.
    Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL (2004) Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. J Biol Chem 279(33):34614–34623.  https://doi.org/10.1074/jbc.M404673200. [pii]: M404673200PubMedCrossRefGoogle Scholar
  93. 93.
    Dreja K, Voldstedlund M, Vinten J, Tranum-Jensen J, Hellstrand P, Sward K (2002) Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler Thromb Vasc Biol 22(8):1267–1272PubMedCrossRefGoogle Scholar
  94. 94.
    Weerth SH, Holtzclaw LA, Russell JT (2007) Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 41(2):155–167.  https://doi.org/10.1016/j.ceca.2006.06.006. [pii]: S0143-4160(06)00124-2PubMedCrossRefGoogle Scholar
  95. 95.
    Roettger BF, Rentsch RU, Pinon D, Holicky E, Hadac E, Larkin JM, Miller LJ (1995) Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 128(6):1029–1041PubMedCrossRefGoogle Scholar
  96. 96.
    Xia Z, Gray JA, Compton-Toth BA, Roth BL (2003a) A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 278(24):21901–21908.  https://doi.org/10.1074/jbc.M301905200 PubMedCrossRefGoogle Scholar
  97. 97.
    Xia Z, Hufeisen SJ, Gray JA, Roth BL (2003b) The PDZ-binding domain is essential for the dendritic targeting of 5-HT2A serotonin receptors in cortical pyramidal neurons in vitro. Neuroscience 122(4):907–920PubMedCrossRefGoogle Scholar
  98. 98.
    Abbas AI, Yadav PN, Yao WD, Arbuckle MI, Grant SG, Caron MG, Roth BL (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci 29(22):7124–7136.  https://doi.org/10.1523/JNEUROSCI.1090-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Dunn HA, Chahal HS, Caetano FA, Holmes KD, Yuan GY, Parikh R, Heit B, Ferguson SS (2016) PSD-95 regulates CRFR1 localization, trafficking and beta-arrestin2 recruitment. Cell Signal 28(5):531–540.  https://doi.org/10.1016/j.cellsig.2016.02.013 PubMedCrossRefGoogle Scholar
  100. 100.
    Buckholtz NS, Freedman DX, Middaugh LD (1985) Daily LSD administration selectively decreases serotonin2 receptor binding in rat brain. Eur J Pharmacol 109(3):421–425PubMedCrossRefGoogle Scholar
  101. 101.
    Buckholtz NS, Zhou DF, Freedman DX (1988) Serotonin2 agonist administration down-regulates rat brain serotonin2 receptors. Life Sci 42(24):2439–2445PubMedCrossRefGoogle Scholar
  102. 102.
    Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 56(5):441–451PubMedCrossRefGoogle Scholar
  103. 103.
    Reynolds GP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates cortical 5-HT2 receptors. Eur J Pharmacol 89(3–4):325–326PubMedCrossRefGoogle Scholar
  104. 104.
    Gagnon AW, Kallal L, Benovic JL (1998) Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-adrenergic receptor. J Biol Chem 273(12):6976–6981PubMedCrossRefGoogle Scholar
  105. 105.
    Jockers R, Angers S, Da Silva A, Benaroch P, Strosberg AD, Bouvier M, Marullo S (1999) Beta(2)-adrenergic receptor down-regulation. Evidence for a pathway that does not require endocytosis. J Biol Chem 274(41):28900–28908PubMedCrossRefGoogle Scholar
  106. 106.
    Yuen EY, Jiang Q, Chen P, Feng J, Yan Z (2008) Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem 283(25):17194–17204.  https://doi.org/10.1074/jbc.M801713200. [pii]: M801713200PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lin FT, Daaka Y, Lefkowitz RJ (1998) beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem 273(48):31640–31643PubMedCrossRefGoogle Scholar
  108. 108.
    Luttrell LM, Daaka Y, Della Rocca GJ, Lefkowitz RJ (1997) G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of Erk kinases. J Biol Chem 272(50):31648–31656PubMedCrossRefGoogle Scholar
  109. 109.
    Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol Chemother 20:106–120PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Corne SJ, Pickering RW (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11(1):65–78PubMedCrossRefGoogle Scholar
  111. 111.
    Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT2A receptors are active under physiological conditions. Psychopharmacology 128(2):198–205PubMedCrossRefGoogle Scholar
  112. 112.
    Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452.  https://doi.org/10.1016/j.neuron.2007.01.008 PubMedCrossRefGoogle Scholar
  113. 113.
    Malick JB, Doren E, Barnett A (1977) Quipazine-induced head-twitch in mice. Pharmacol Biochem Behav 6(3):325–329PubMedCrossRefGoogle Scholar
  114. 114.
    Darmani NA, Martin BR, Glennon RA (1992) Behavioral evidence for differential adaptation of the serotonergic system after acute and chronic treatment with (+/−)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) or ketanserin. J Pharmacol Exp Ther 262(2):692–698PubMedGoogle Scholar
  115. 115.
    Fantegrossi WE, Harrington AW, Eckler JR, Arshad S, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2005) Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology 181(3):496–503.  https://doi.org/10.1007/s00213-005-0009-4 PubMedCrossRefGoogle Scholar
  116. 116.
    Schreiber R, Brocco M, Millan MJ (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the ‘atypical’ antipsychotics, clozapine and risperidone. Eur J Pharmacol 264(1):99–102. [pii]: 0014-2999(94)90643-2PubMedCrossRefGoogle Scholar
  117. 117.
    Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282(2):699–706PubMedGoogle Scholar
  118. 118.
    Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23(26):8836–8843. [pii]: 23/26/8836PubMedGoogle Scholar
  119. 119.
    Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KL, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181.  https://doi.org/10.1038/nature08506. [pii]: nature08506PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Nakagawasai O, Tadano T, Arai Y, Hozumi S, Oba A, Tan-No K, Yasuhara H, Kisara K, Oreland L (2003) Enhancement of 5-hydroxytryptamine-induced head-twitch response after olfactory bulbectomy. Neuroscience 117(4):1017–1023. [pii]: S0306452202007881PubMedCrossRefGoogle Scholar
  121. 121.
    Orikasa S, Kisara K (1982) A possible mechanism of the tyramine-induced head-twitch response. Eur J Pharmacol 80(2–3):163–169. [pii]: 0014-2999(82)90050-4PubMedCrossRefGoogle Scholar
  122. 122.
    Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217.  https://doi.org/10.1124/pr.110.002642 PubMedCrossRefGoogle Scholar
  123. 123.
    Garcia EE, Smith RL, Sanders-Bush E (2007) Role of G(q) protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52(8):1671–1677.  https://doi.org/10.1016/j.neuropharm.2007.03.013. [pii]: S0028-3908(07)00093-7PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Deshpande DA, Theriot BS, Penn RB, Walker JK (2008) Beta-arrestins specifically constrain beta2-adrenergic receptor signaling and function in airway smooth muscle. FASEB J 22(7):2134–2141.  https://doi.org/10.1096/fj.07-102459. [pii]: fj.07-102459PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ferrari SL, Pierroz DD, Glatt V, Goddard DS, Bianchi EN, Lin FT, Manen D, Bouxsein ML (2005) Bone response to intermittent parathyroid hormone is altered in mice null for {beta}-Arrestin2. Endocrinology 146(4):1854–1862.  https://doi.org/10.1210/en.2004-1282. [pii]: en.2004-1282PubMedCrossRefGoogle Scholar
  126. 126.
    Su Y, Raghuwanshi SK, Yu Y, Nanney LB, Richardson RM, Richmond A (2005) Altered CXCR2 signaling in beta-arrestin-2-deficient mouse models. J Immunol 175(8):5396–5402. [pii]: 175/8/5396PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G (2006) Association of beta-arrestin and TRAF6 negatively regulates toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 7(2):139–147.  https://doi.org/10.1038/ni1294. [pii]: ni1294PubMedCrossRefGoogle Scholar
  128. 128.
    Byers MA, Calloway PA, Shannon L, Cunningham HD, Smith S, Li F, Fassold BC, Vines CM (2008) Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. J Immunol 181(7):4723–4732. [pii]: 181/7/4723PubMedCrossRefGoogle Scholar
  129. 129.
    Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279(22):23214–23222.  https://doi.org/10.1074/jbc.M402125200. [pii]: M402125200PubMedCrossRefGoogle Scholar
  130. 130.
    Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O (1998) Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 273(12):7118–7122PubMedCrossRefGoogle Scholar
  131. 131.
    Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 106(24):9649–9654.  https://doi.org/10.1073/pnas.0904361106. [pii]: 0904361106PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408(6813):720–723PubMedCrossRefGoogle Scholar
  133. 133.
    Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314(3):1195–1201.  https://doi.org/10.1124/jpet.105.087254. [pii]: jpet.105.087254PubMedCrossRefGoogle Scholar
  134. 134.
    Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ (2005) Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci U S A 102(5):1442–1447.  https://doi.org/10.1073/pnas.0409532102. [pii]: 0409532102PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci U S A 102(5):1448–1453.  https://doi.org/10.1073/pnas.0409534102. [pii]: 0409534102PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11(1):59–67.  https://doi.org/10.1016/j.coph.2011.02.007 PubMedCrossRefGoogle Scholar
  137. 137.
    Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC, Andersson CM, Spalding TA, Gibson DF, Krebs-Thomson K, Powell SB, Geyer MA, Hacksell U, Brann MR (2001) 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299(1):268–276PubMedGoogle Scholar
  138. 138.
    Moreno JL, Holloway T, Umali A, Rayannavar V, Sealfon SC, Gonzalez-Maeso J (2013) Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice. Psychopharmacology 225(1):217–226.  https://doi.org/10.1007/s00213-012-2809-7 PubMedCrossRefGoogle Scholar
  139. 139.
    Yadav PN, Kroeze WK, Farrell MS, Roth BL (2011) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 339(1):99–105.  https://doi.org/10.1124/jpet.111.183780 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Raote I, Bhattacharyya S, Panicker MM (2013) Functional selectivity in serotonin receptor 2A (5-HT2A) endocytosis, recycling, and phosphorylation. Mol Pharmacol 83(1):42–50.  https://doi.org/10.1124/mol.112.078626 PubMedCrossRefGoogle Scholar
  141. 141.
    Willins DL, Berry SA, Alsayegh L, Backstrom JR, Sanders-Bush E, Friedman L, Roth BL (1999) Clozapine and other 5-hydroxytryptamine-2A receptor antagonists alter the subcellular distribution of 5-hydroxytryptamine-2A receptors in vitro and in vivo. Neuroscience 91(2):599–606PubMedCrossRefGoogle Scholar
  142. 142.
    Dwyer DS, Donohoe D (2003) Induction of hyperglycemia in mice with atypical antipsychotic drugs that inhibit glucose uptake. Pharmacol Biochem Behav 75(2):255–260PubMedCrossRefGoogle Scholar
  143. 143.
    Lu XH, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain Res 1011(1):58–68.  https://doi.org/10.1016/j.brainres.2004.03.018 PubMedCrossRefGoogle Scholar
  144. 144.
    Sutton LP, Rushlow WJ (2011) The effects of neuropsychiatric drugs on glycogen synthase kinase-3 signaling. Neuroscience 199:116–124.  https://doi.org/10.1016/j.neuroscience.2011.09.056 PubMedCrossRefGoogle Scholar
  145. 145.
    Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164(4):1162–1194.  https://doi.org/10.1111/j.1476-5381.2011.01386.x PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, Ruta JD, Albizu L, Li Z, Umali A, Shim J, Fabiato A, MacKerell AD Jr, Brezina V, Sealfon SC, Filizola M, Gonzalez-Maeso J, Logothetis DE (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147(5):1011–1023.  https://doi.org/10.1016/j.cell.2011.09.055 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    McOmish CE, Lira A, Hanks JB, Gingrich JA (2012) Clozapine-induced locomotor suppression is mediated by 5-HT(2A) receptors in the forebrain. Neuropsychopharmacology 37(13):2747–2755.  https://doi.org/10.1038/npp.2012.139 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Williams AA, Ingram WM, Levine S, Resnik J, Kamel CM, Lish JR, Elizalde DI, Janowski SA, Shoker J, Kozlenkov A, Gonzalez-Maeso J, Gallitano AL (2012) Reduced levels of serotonin 2A receptors underlie resistance of Egr3-deficient mice to locomotor suppression by clozapine. Neuropsychopharmacology 37(10):2285–2298.  https://doi.org/10.1038/npp.2012.81 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departments of Molecular Medicine and NeuroscienceThe Scripps Research InstituteJupiterUSA

Personalised recommendations