Pharmacological Analysis in Favour of a Physiological Role for the Constitutive Activity of 5-HT2A Receptors in Learning

  • Philippe De Deurwaerdère
  • Guillaume Drutel
  • Giuseppe Di Giovanni
Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

The Serotonin2A (5-hydroxytryptamin, 5-HT2A) receptor is one of the numerous seven transmembrane G protein coupled receptors for serotonin (5-HT) originally described as displaying a low affinity for its endogenous ligand. It is densely expressed in the cortex and the hippocampus of rodents, primates and humans brain. A role of 5-HT2A receptors in learning and memory has been proposed for years. In some behavioural tasks in rodents, 5-HT2A receptors would display a constitutive activity, a spontaneous activity of the receptor occurring without the presence of the endogenous ligand and silenced by inverse agonists. Nonetheless, the demonstration of the existence of such a subtle activity in living organisms relies on specific criteria and on clear-cut pharmacological evaluation. While it has been claimed that 5-HT2A receptor constitutive activity participates in the conditioned eyeblink response in rabbits, such an activity would not be systematically observed in other models of learning and conditioning such as the conditioned avoidance response in rats. Here, we propose a thorough pharmacological analysis of the available data arguing in favour of the involvement of constitutive activity of 5-HT2A receptors, mostly in learning tasks and discuss the functional significance of such an activity.

Keywords

Pharmacology of 5-HT2 receptors MDL11,939 Selectivity Pavlovian conditioning Conditioned avoidance response Autoshaping learning task Inverse agonism Intracellular signaling pathways Serotonin 

Abbreviations

5,7-DHT

5,7-dihydroxytryptamin

5-HT

Serotonin

5-HT2A receptor

5-hydroxytryptamine2A receptor

5-HT2C receptor

5-hydroxytryptamine2C receptor

BOL

d-bromolysergic acid diethylamide

CAR

Conditioned avoidance response

CHO

Chinese hamster ovary

DA

dopamine

DOI

(±)-1(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride

DOM

d,l-2,5-dimethoxy-4-methylamphetamine

GPCR

G-Protein coupled receptor

HEK-293

Human embryonic kidney 293

IP

Inositol phosphate

LSD

d-lysergic acid diethylamide

MDA

d,l-methylenedioxyamphetamine

MDMA

d,l-methylenedioxymethamphetamine

PLA2

Phospholipase A2

PLC

Phospholipase C

PLD

Phospholipase D

SERT

Serotonin transporter

Notes

Acknowledgments

The authors are indebted to the EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” for supporting their international collaboration.

References

  1. 1.
    Morisset S et al (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408(6814):860–864PubMedCrossRefGoogle Scholar
  2. 2.
    Navailles S et al (2013a) Serotonin2C receptor constitutive activity: in vivo direct and indirect evidence and functional significance. Cent Nerv Syst Agents Med Chem 13(2):98–107PubMedCrossRefGoogle Scholar
  3. 3.
    Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedeberg’s Arch Pharmacol 366(5):381–416CrossRefGoogle Scholar
  4. 4.
    Hoyer D et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46(2):157–203PubMedGoogle Scholar
  5. 5.
    Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554PubMedCrossRefGoogle Scholar
  6. 6.
    Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44(3):401–458PubMedGoogle Scholar
  7. 7.
    Schmidt CJ et al (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 56(25):2209–2222PubMedCrossRefGoogle Scholar
  8. 8.
    Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A 86(19):7321–7325PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Milligan G, Bond RA, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16(1):10–13PubMedCrossRefGoogle Scholar
  10. 10.
    Weiner DM et al (2001) 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299(1):268–276PubMedGoogle Scholar
  11. 11.
    Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10(5):355–362PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hoyer D et al (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376(1):97–107PubMedCrossRefGoogle Scholar
  13. 13.
    Lopez-Gimenez JF et al (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedeberg’s Arch Pharmacol 356(4):446–454CrossRefGoogle Scholar
  14. 14.
    Lopez-Gimenez JF et al (1999) Human striosomes are enriched in 5-HT2A receptors: autoradiographical visualization with [3H]MDL100,907,[125I](+/−)DOI and [3H]ketanserin. Eur J Neurosci 11(10):3761–3765PubMedCrossRefGoogle Scholar
  15. 15.
    Lopez-Gimenez JF et al (1998) [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37(9):1147–1158PubMedCrossRefGoogle Scholar
  16. 16.
    Lopez-Gimenez JF et al (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589PubMedCrossRefGoogle Scholar
  17. 17.
    Wright DE et al (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373PubMedCrossRefGoogle Scholar
  18. 18.
    Blin J et al (1993) Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain 116(Pt 3):497–510PubMedCrossRefGoogle Scholar
  19. 19.
    Erritzoe D et al (2010) A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans. J Neurosci 30(9):3391–3397PubMedCrossRefGoogle Scholar
  20. 20.
    Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3(1):11–26PubMedCrossRefGoogle Scholar
  21. 21.
    Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599PubMedCrossRefGoogle Scholar
  23. 23.
    Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69(5):1749–1757PubMedCrossRefGoogle Scholar
  24. 24.
    Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864(2):176–185PubMedCrossRefGoogle Scholar
  25. 25.
    Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111(1):163–176PubMedCrossRefGoogle Scholar
  26. 26.
    Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230(4):427–439PubMedCrossRefGoogle Scholar
  27. 27.
    Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J, Marin P, Becamel C (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proceedings of the National Academy of Sciences of the United States of America 113:E1382–E1391PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Roth BL et al (1998) Serotonin 5-HT2A receptors: molecular biology and mechanisms of regulation. Crit Rev Neurobiol 12(4):319–338PubMedCrossRefGoogle Scholar
  29. 29.
    Shapiro DA et al (2002) Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem 277(13):11441–11449PubMedCrossRefGoogle Scholar
  30. 30.
    Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33(8):2007–2019PubMedCrossRefGoogle Scholar
  31. 31.
    Harvey JA (1996) Serotonergic regulation of associative learning. Behav Brain Res 73(1–2):47–50PubMedGoogle Scholar
  32. 32.
    Winstanley CA et al (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology 176(3–4):376–385PubMedCrossRefGoogle Scholar
  33. 33.
    Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci U S A 40(4):228–231PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Abi-Saab W et al (2002) Ritanserin antagonism of m-chlorophenylpiperazine effects in neuroleptic-free schizophrenics patients: support for serotonin-2 receptor modulation of schizophrenia symptoms. Psychopharmacology 162(1):55–62PubMedCrossRefGoogle Scholar
  35. 35.
    Iqbal N, van Praag HM (1995) The role of serotonin in schizophrenia. Eur Neuropsychopharmacol 5(Suppl):11–23PubMedCrossRefGoogle Scholar
  36. 36.
    Krystal JH et al (1993) m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients. Evidence implicating serotonergic systems in the positive symptoms of schizophrenia. Arch Gen Psychiatry 50(8):624–635PubMedCrossRefGoogle Scholar
  37. 37.
    Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246PubMedGoogle Scholar
  38. 38.
    Meltzer HY et al (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1159–1172CrossRefGoogle Scholar
  39. 39.
    Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67(1):176–197PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Guiard BP, Di Giovanni G (2015) Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol 6:46PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Weisstaub NV et al (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313(5786):536–540PubMedCrossRefGoogle Scholar
  42. 42.
    Cummings J et al (2014) Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383(9916):533–540PubMedCrossRefGoogle Scholar
  43. 43.
    Berg KA et al (2008) A conservative, single-amino acid substitution in the second cytoplasmic domain of the human Serotonin2C receptor alters both ligand-dependent and -independent receptor signaling. J Pharmacol Exp Ther 324(3):1084–1092PubMedCrossRefGoogle Scholar
  44. 44.
    Berg KA et al (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26(12):625–630PubMedCrossRefGoogle Scholar
  45. 45.
    Berg KA et al (1998) Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists. Ann N Y Acad Sci 861:104–110PubMedCrossRefGoogle Scholar
  46. 46.
    Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15(3):598–611PubMedCrossRefGoogle Scholar
  47. 47.
    Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65(1):2–11PubMedCrossRefGoogle Scholar
  48. 48.
    Milligan G, Bond RA (1997) Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 18(12):468–474PubMedCrossRefGoogle Scholar
  49. 49.
    Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 56(5):441–451PubMedCrossRefGoogle Scholar
  50. 50.
    Arrang JM, Morisset S, Gbahou F (2007) Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 28(7):350–357PubMedCrossRefGoogle Scholar
  51. 51.
    De Deurwaerdere P et al (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24(13):3235–3241PubMedCrossRefGoogle Scholar
  52. 52.
    Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213PubMedCrossRefGoogle Scholar
  53. 53.
    Raymond JR et al (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92(2–3):179–212PubMedCrossRefGoogle Scholar
  54. 54.
    Egan CT, Herrick-Davis K, Teitler M (1998) Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs. J Pharmacol Exp Ther 286(1):85–90PubMedGoogle Scholar
  55. 55.
    Grotewiel MS, Sanders-Bush E (1999) Differences in agonist-independent activity of 5-Ht2A and 5-HT2c receptors revealed by heterologous expression. Naunyn Schmiedeberg’s Arch Pharmacol 359(1):21–27CrossRefGoogle Scholar
  56. 56.
    Teitler M, Herrick-Davis K, Purohit A (2002) Constitutive activity of G-protein coupled receptors: emphasis on serotonin receptors. Curr Top Med Chem 2(6):529–538PubMedCrossRefGoogle Scholar
  57. 57.
    Muntasir HA et al (2006) Inverse agonist activity of sarpogrelate, a selective 5-HT2A-receptor antagonist, at the constitutively active human 5-HT2A receptor. J Pharmacol Sci 102(2):189–195PubMedCrossRefGoogle Scholar
  58. 58.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152PubMedCrossRefGoogle Scholar
  59. 59.
    Gray JA et al (2003) The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. Mol Pharmacol 63(5):961–972PubMedCrossRefGoogle Scholar
  60. 60.
    Karaki S et al (2014) Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13(5):1273–1285PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Romero G, von Zastrow M, Friedman PA (2011) Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol 62:279–314PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Becamel C et al (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279(19):20257–20266PubMedCrossRefGoogle Scholar
  63. 63.
    Dunn HA, Ferguson SS (2015) PDZ protein regulation of G protein-coupled receptor trafficking and signaling pathways. Mol Pharmacol 88(4):624–639PubMedCrossRefGoogle Scholar
  64. 64.
    Grotewiel MS, Sanders-Bush E (1994) Regulation of serotonin2A receptors in heterologous expression systems. J Neurochem 63(4):1255–1260PubMedCrossRefGoogle Scholar
  65. 65.
    Albizu L et al (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61(4):770–777PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gonzalez-Maeso J et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452(7183):93–97PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Teitler M, Herrick-Davis K (2014) Determining the oligomer number of native GPCR using florescence correlation spectroscopy and drug-induced inactivation-reactivation. Curr Pharm Biotechnol 15(10):927–937PubMedCrossRefGoogle Scholar
  68. 68.
    Vinals X et al (2015) Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Borroto-Escuela DO et al (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284PubMedCrossRefGoogle Scholar
  70. 70.
    Di Giovanni G et al (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91(2):587–597PubMedCrossRefGoogle Scholar
  71. 71.
    Kehne JH et al (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15(2):116–124PubMedCrossRefGoogle Scholar
  72. 72.
    Palfreyman MG et al (1993) Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology 112(1 Suppl):S60–S67PubMedCrossRefGoogle Scholar
  73. 73.
    Welsh SE, Romano AG, Harvey JA (1998b) Effects of serotonin 5-HT(2A/2C) antagonists on associative learning in the rabbit. Psychopharmacology 137(2):157–163PubMedCrossRefGoogle Scholar
  74. 74.
    Welsh SE et al (1998a) Effects of LSD, ritanserin, 8-OH-DPAT, and lisuride on classical conditioning in the rabbit. Pharmacol Biochem Behav 59(2):469–475PubMedCrossRefGoogle Scholar
  75. 75.
    Romano AG, Hood H, Harvey JA (2000) Dissociable effects of the 5-HT(2) antagonist mianserin on associative learning and performance in the rabbit. Pharmacol Biochem Behav 67(1):103–110PubMedCrossRefGoogle Scholar
  76. 76.
    Romano AG, Harvey JA (1993) Enhanced learning following a single, acute dose of MDA. Pharmacol Biochem Behav 44(4):965–969PubMedCrossRefGoogle Scholar
  77. 77.
    Romano AG, Harvey JA (1994) MDMA enhances associative and nonassociative learning in the rabbit. Pharmacol Biochem Behav 47(2):289–293PubMedCrossRefGoogle Scholar
  78. 78.
    Knight AR et al (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedeberg’s Arch Pharmacol 370(2):114–123CrossRefGoogle Scholar
  79. 79.
    Engel G et al (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 332(1):1–7CrossRefGoogle Scholar
  80. 80.
    Hoyer D, Schoeffter P (1991) 5-HT receptors: subtypes and second messengers. J Recept Res 11(1–4):197–214PubMedCrossRefGoogle Scholar
  81. 81.
    Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216PubMedCrossRefGoogle Scholar
  82. 82.
    Battaglia G et al (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149(1–2):159–163PubMedCrossRefGoogle Scholar
  83. 83.
    Lyon RA, Glennon RA, Titeler M (1986) 3,4-Methylenedioxymethamphetamine (MDMA): stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology 88(4):525–526PubMedCrossRefGoogle Scholar
  84. 84.
    Kahn RS, Wetzler S (1991) m-Chlorophenylpiperazine as a probe of serotonin function. Biol Psychiatry 30(11):1139–1166PubMedCrossRefGoogle Scholar
  85. 85.
    Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33(3):303–309PubMedGoogle Scholar
  86. 86.
    Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159(2):157–164PubMedCrossRefGoogle Scholar
  87. 87.
    Forbes IT et al (1993) N-(1-methyl-5-indolyl)-N′-(3-pyridyl)urea hydrochloride: the first selective 5-HT1C receptor antagonist. J Med Chem 36(8):1104–1107PubMedCrossRefGoogle Scholar
  88. 88.
    Meneses A (2002) Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism? Cell Mol Neurobiol 22(5–6):675–688PubMedCrossRefGoogle Scholar
  89. 89.
    Leysen JE et al (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244(1):310–321PubMedGoogle Scholar
  90. 90.
    Wainscott DB et al (1996) Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences. J Pharmacol Exp Ther 276(2):720–727PubMedGoogle Scholar
  91. 91.
    Green JP et al (1977) Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide. Proc Natl Acad Sci U S A 74(12):5697–5701PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452PubMedCrossRefGoogle Scholar
  93. 93.
    Harvey JA et al (1999) Effect of 5-HT2 receptor antagonists on a cranial nerve reflex in the rabbit: evidence for inverse agonism. Psychopharmacology 141(2):162–168PubMedCrossRefGoogle Scholar
  94. 94.
    Romano AG et al (2006) Effect of serotonin depletion on 5-HT2A-mediated learning in the rabbit: evidence for constitutive activity of the 5-HT2A receptor in vivo. Psychopharmacology 184(2):173–181PubMedCrossRefGoogle Scholar
  95. 95.
    Winsky L, Harvey JA (1992) 6-Hydroxydopamine induced impairment of Pavlovian conditioning in the rabbit. Neurochem Res 17(5):415–422PubMedCrossRefGoogle Scholar
  96. 96.
    Di Giovanni G, De Deurwaerdere P (2016) New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 157:125–162PubMedCrossRefGoogle Scholar
  97. 97.
    van Wijngaarden I, Tulp MT, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Eur J Pharmacol 188(6):301–312PubMedCrossRefGoogle Scholar
  98. 98.
    Garratt JC et al (1991) Inhibition of 5-hydroxytryptamine neuronal activity by the 5-HT agonist, DOI. Eur J Pharmacol 199(3):349–355PubMedCrossRefGoogle Scholar
  99. 99.
    Hery F, Ternaux JP (1981) Regulation of release processes in central serotoninergic neurons. J Physiol Paris 77(2–3):287–301PubMedGoogle Scholar
  100. 100.
    Wichems CH, Hollingsworth CK, Bennett BA (1995) Release of serotonin induced by 3,4-methylenedioxymethamphetamine (MDMA) and other substituted amphetamines in cultured fetal raphe neurons: further evidence for calcium-independent mechanisms of release. Brain Res 695(1):10–18PubMedCrossRefGoogle Scholar
  101. 101.
    Carboni E, Di Chiara G (1989) Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 32(3):637–645PubMedCrossRefGoogle Scholar
  102. 102.
    Strange PG (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci 23(2):89–95PubMedCrossRefGoogle Scholar
  103. 103.
    Dave KD, Harvey JA, Aloyo VJ (2007) The time-course for up- and down-regulation of the cortical 5-hydroxytryptamine (5-HT)2A receptor density predicts 5-HT2A receptor-mediated behavior in the rabbit. J Pharmacol Exp Ther 323(1):327–335PubMedCrossRefGoogle Scholar
  104. 104.
    Harvey JA et al (2004) Selective remodeling of rabbit frontal cortex: relationship between 5-HT2A receptor density and associative learning. Psychopharmacology 172(4):435–442PubMedCrossRefGoogle Scholar
  105. 105.
    Barker EL et al (1994) Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269(16):11687–11690PubMedGoogle Scholar
  106. 106.
    Amato D et al (2015) Neuropharmacology of light-induced locomotor activation. Neuropharmacology 95:243–251PubMedCrossRefGoogle Scholar
  107. 107.
    Harvey ML, Swallows CL, Cooper MA (2012) A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters. Behav Neurosci 126(4):530–537PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Clinard CT et al (2015) Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 90:102–112PubMedCrossRefGoogle Scholar
  109. 109.
    Zhang G et al (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64:403–413PubMedCrossRefGoogle Scholar
  110. 110.
    Bekinschtein P et al (2013) Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats. J Neurosci 33(40):15716–15725PubMedCrossRefGoogle Scholar
  111. 111.
    Dougherty JP, Aloyo VJ (2011) Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice. Psychopharmacology 215(3):581–593PubMedCrossRefGoogle Scholar
  112. 112.
    Wadenberg ML (2010) Conditioned avoidance response in the development of new antipsychotics. Curr Pharm Des 16(3):358–370PubMedCrossRefGoogle Scholar
  113. 113.
    Wadenberg MG et al (2001) Antagonism at 5-HT(2A) receptors potentiates the effect of haloperidol in a conditioned avoidance response task in rats. Pharmacol Biochem Behav 68(3):363–370PubMedCrossRefGoogle Scholar
  114. 114.
    Wadenberg ML et al (1998) Enhancement of antipsychoticlike properties of raclopride in rats using the selective serotonin2A receptor antagonist MDL 100,907. Biol Psychiatry 44(6):508–515PubMedCrossRefGoogle Scholar
  115. 115.
    Wadenberg ML et al (1996) Enhancement of antipsychotic-like properties of the dopamine D2 receptor antagonist, raclopride, by the additional treatment with the 5-HT2 receptor blocking agent, ritanserin, in the rat. Eur Neuropsychopharmacol 6(4):305–310PubMedCrossRefGoogle Scholar
  116. 116.
    Wiker C et al (2005) Adjunctive treatment with mianserin enhances effects of raclopride on cortical dopamine output and, in parallel, its antipsychotic-like effect. Neuropsychiatr Dis Treat 1(4):356–372PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wadenberg ML, Ahlenius S (1988) Suppression of conditioned avoidance by 8-OH-DPAT in the rat. J Neural Transm 74(3):195–198PubMedCrossRefGoogle Scholar
  118. 118.
    Marquis KL et al (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi ]indole]: a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320(1):486–496PubMedCrossRefGoogle Scholar
  119. 119.
    Siuciak JA et al (2007) CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52(2):279–290PubMedCrossRefGoogle Scholar
  120. 120.
    Meneses A (2003) A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem 10(5):363–372PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Meneses A, Terron JA, Hong E (1997) Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning. Behav Brain Res 89(1–2):217–223PubMedCrossRefGoogle Scholar
  122. 122.
    Meneses A, Hong E (1997) Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning. Behav Brain Res 87(1):105–110PubMedCrossRefGoogle Scholar
  123. 123.
    Meneses A, Hong E (1994) Mechanism of action of 8-OH-DPAT on learning and memory. Pharmacol Biochem Behav 49(4):1083–1086PubMedCrossRefGoogle Scholar
  124. 124.
    Navailles S, De Deurwaerdère P (2010) The constitutive activity of 5-HT2C receptors as an additional modality of interaction of the serotonergic system in motor control. In: Di Giovanni G, Di Matteo V, Esposito E (eds) 5-HT2C receptors in the pathophysiology of CNS disease, The Receptors series: Springer. Humana Press, Totowa, pp 187–214Google Scholar
  125. 125.
    Walker EA, Foley JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21(2):83–89PubMedCrossRefGoogle Scholar
  126. 126.
    Leggio GM et al (2009) In vivo evidence that constitutive activity of serotonin2C receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. J Neurochem 111(2):614–623PubMedCrossRefGoogle Scholar
  127. 127.
    Murray KC et al (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16(6):694–700PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Navailles S et al (2013b) Serotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson’s disease. Int J Neuropsychopharmacol 16(3):593–606PubMedCrossRefGoogle Scholar
  129. 129.
    Eriksson E et al (1999) Effects of mCPP on the extracellular concentrations of serotonin and dopamine in rat brain. Neuropsychopharmacology 20(3):287–296PubMedCrossRefGoogle Scholar
  130. 130.
    Navailles S et al (2006) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99(4):1311–1319PubMedCrossRefGoogle Scholar
  131. 131.
    De Deurwaerdere P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol 151:175–236Google Scholar
  132. 132.
    Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264(3):325–330PubMedCrossRefGoogle Scholar
  133. 133.
    Schmidt CJ et al (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223(1):65–74PubMedCrossRefGoogle Scholar
  134. 134.
    Schmidt CJ, Sullivan CK, Fadayel GM (1994) Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62(4):1382–1389PubMedCrossRefGoogle Scholar
  135. 135.
    Ichikawa J, Meltzer HY (1995) DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698(1–2):204–208PubMedCrossRefGoogle Scholar
  136. 136.
    Lucas G et al (2000) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39(6):1053–1063PubMedCrossRefGoogle Scholar
  137. 137.
    Ichikawa J et al (1995) R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced dopamine release in rat striatum and nucleus accumbens. Eur J Pharmacol 287(2):179–184PubMedCrossRefGoogle Scholar
  138. 138.
    Porras G et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26(3):311–324PubMedCrossRefGoogle Scholar
  139. 139.
    Meltzer HY et al (2010) Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of parkinson’s disease psychosis. Neuropsychopharmacology 35(4):881–892PubMedCrossRefGoogle Scholar
  140. 140.
    Weiner DM et al (2003) Psychosis of Parkinson’s disease: serotonin 2A receptor inverse agonists as potential therapeutics. Curr Opin Investig Drugs 4(7):815–819PubMedGoogle Scholar
  141. 141.
    Navailles S et al (2010) High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson’s disease. J Neurosci 30(6):2356–2364PubMedCrossRefGoogle Scholar
  142. 142.
    Navailles S et al (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Philippe De Deurwaerdère
    • 1
    • 2
  • Guillaume Drutel
    • 1
    • 3
  • Giuseppe Di Giovanni
    • 4
    • 5
  1. 1.Université de BordeauxBordeauxFrance
  2. 2.Centre National de la Recherche Scientifique UMR 5287BordeauxFrance
  3. 3.Institut National de la Santé et de la Recherche Médicale, U 1215BordeauxFrance
  4. 4.Neuroscience DivisionSchool of Bioscience, Cardiff UniversityCardiffUK
  5. 5.Department of Physiology and BiochemistryUniversity of MaltaMsidaMalta

Personalised recommendations