Advertisement

Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: constraints from kinematic forward modelling

  • Christophe Nussbaum
  • Armelle Kloppenburg
  • Typhaine Caër
  • Paul Bossart
Chapter
Part of the Swiss Journal of Geosciences Supplement book series (SWISSGEO, volume 5)

Abstract

We propose a geometrically, kinematically, and mechanically viable thin-skinned kinematic forward model for a cross section intersecting the Mont Terri rock laboratory in the frontal-most part of the Jura fold-and-thrust belt, Switzerland. In addition to the available tunnel, borehole, and surface data, initial boundary conditions are crucial constraints for the forward modelling scenarios, especially the inherited topography of the basement and any pre-compressional offset within the Mesozoic sediments. Our kinematic analysis suggests an early-stage formation of the Mont Terri anticline located above ENE-trending, Late Paleozoic extensional faults, followed by back-stepping of the deformation developing the Clos du Doubs and Caquerelle anticlines further south. In this model, the thrust sequence was dictated by the inherited basement faults, which acted as nuclei for the ramps, detached along the basal décollement within the Triassic evaporites. The mechanical viability of both the thrust angles and thrust sequence was demonstrated by applying the limit analysis theory. Despite numerous subsurface geological data, extrapolation of structures to depth remains largely under-constrained. We have tested an alternative model for the same cross section, involving an upper detachment at the top of the Staffelegg Formation that leads to duplication of the sub-Opalinus Clay formations, prior to detachment and thrusting on the Triassic evaporites. This model is geometrically and kinematically viable, but raises mechanical questions. A total displacement of 2.9 and 14.2 km are inferred for the classical and the alternative scenarios, respectively. In the latter, forward modelling implies that material was transported 10.8 km along the upper detachment. It is not yet clear where this shortening might have been accommodated. Despite the differences in structural style, both models show that pre-existing basement structures might have interfered in time and space. Both styles may have played a role, with lateral variation dictated by basement inherited structures.

Keywords

Jura mountains Structural geology Multiple detachments Forward modelling Inherited basement faults Mechanical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the Mont Terri Project Partners and especially swisstopo for their financial contribution. Both reviewers Jon Mosar and Urs Eichenberger provided useful comments and helped to improve the manuscript. Many geologists (i.e. David Jaeggi, Nicolas Badertscher, Herfried Madritsch, Andrea Lisjak) have contributed to the geological mapping of tectonic structures in the Mont Terri rock laboratory. We thank Caroline Hirsiger and Emilie Carrera for creating and improving the figures of this study, and Roy Freeman who did the English proofreading of the final version.

References

  1. Allmendinger, R. W. (1998). Inverse and forward numerical modeling of trishear fault propagation folds. Tectonics, 17, 640–656.Google Scholar
  2. Becker, A. (2000). The Jura Mountains: an active foreland fold-andthrust belt? Tectonophysics, 321, 381–406.Google Scholar
  3. Bergerat, F., & Chorowicz, J. (1981). Etude des images Landsat de la zone transformante Rhin-Saoˆne (France). Geologische Rundschau, 70(1), 354–367.Google Scholar
  4. Bitterli, P. (2012). Die Ifenthal-Formation im nördlichen Jura. Swiss Bulletin for Applied Geology, 17(2), 93–117.Google Scholar
  5. Bläsi, H. R., Peters, T. J., & Mazurek, M. (1991). Der Opalinus Clay des Mont Terri (Kanton Jura): Lithologie, Mineralogie und physiko-chemische Gesteinsparameter. Nagra Interner Bericht, 90-60, 44 pp. Nagra, Wettingen, Switzerland. www.nagra.ch.
  6. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J-M., Mayor, J. C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., & Wieczorek, K. (2017). Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110.  https://doi.org/10.1007/s00015-016-0236-1 (this issue).
  7. Bossart, P., & Thury, M. (2008). Mont Terri rock laboratory. Project, programme 1996–2007 and results. Reports of the Swiss Geological Survey, No. 3, 445 pp. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.
  8. Boyer, S. E., & Elliot, D. (1982). Thrust systems. American Association of Petroleum Geologists Bulletin, 66, 1196–1230.Google Scholar
  9. Bureau Technique Norbert Geologues-Conseils SA. (1993). Tunnel du Mont Terri Russelin—Dossier géologie après exécution. Internal report.Google Scholar
  10. Bureau Technique Jean Norbert Geologues SA, Frutiger, J.-J., Schaeren, G., & Neipp, S. (1992). Tunnel du Mont Russelin—Notice d’accompagnement au profil géologique 1:5000 après exécution. Internal report.Google Scholar
  11. Burkhalter, R. M. (1996). Die Passwang-Alloformation (unteres Aalénien bis unteres Bajocien) im zentralen und nördlichen Jura. Eclogae Geologicae Helvetiae, 89(3), 875–934.Google Scholar
  12. Burkhard, M. (1990). Aspects of the large scale Miocene deformation in the most external part of the Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geologicae Helvetiae, 83, 559–583.Google Scholar
  13. Butler, R. W. H., Tavarnelli, E., & Grasso, M. (2006). Structural inheritance in mountain belts: An Alpine-Apennine perspective. Journal of Structural Geology, 28, 1893–1908.Google Scholar
  14. Buxtorf, A. (1907). Zur Tektonik des Kettenjura. Berichte über die Versammlungen des Oberrheinischen. Geologischen Vereins, 40, 29–38.Google Scholar
  15. Caër, T., Maillot, B., Souloumiac, P., Leturmy, P., Frizon de Lamotte, D., & Nussbaum, C. (2015). Mechanical validation of balanced cross sections: The case of the Mont Terri anticline at the Jura front (NW Switzerland). Journal of Structural Geology, 75, 32–48.Google Scholar
  16. Cederboom, C. E., van der Beek, P., Schlunegger, F., Sinclair, H. D., & Oncken, O. (2011). Rapid extensive erosion of the North Alpine foreland basin at 5–4 Ma. Basin Research, 23(5), 528–550.Google Scholar
  17. Chapple, W. M. (1978). Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin, 89, 1189–1198.Google Scholar
  18. Comment, G., Ayer, J., & Becker, D. (2011). Deux nouveaux membres lithostratigraphiques de la Formation de Reuchenette (Kimméridgien, Ajoie, Jura Suisse)—Nouvelles données géologiques et paléontologiques acquises dans le cadre de la construction de l’autoroute A16 (Transjurane). Swiss Bulletin for Applied Geology, 16(1), 3–24.Google Scholar
  19. Dahlen, F. A. (1990). Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18, 55–99.Google Scholar
  20. Davis, D., Suppe, J., & Dahlen, F. A. (1983). Mechanics of fold-andthrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.Google Scholar
  21. Deichmann, N. (1990). Seismizität der Nordschweiz, 1980–1988, und Auswertung der Erdbebenserien von Günsberg, Läufelfingen und Zeglingen. Nagra Technischer Bericht, 90-46, 90 pp. Nagra, Wettingen, Switzerland. www.nagra.ch.
  22. Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19, 617–620.Google Scholar
  23. Freivogel, M., & Huggenberger, P. (2003). Modellierung bilanzierter Profile im Gebiet Mont Terri-La Croix (Kanton Jura). In P. Heitzmann & J.-P. Tripet (Eds.), Mont Terri Project-geology, paleohydrology and stress field of the Mont Terri region (pp. 7–44). Federal Office for Water and Geology (FOWG), Geology Series, No. 5, 319 pp. www.mont-terri.ch.
  24. Giambiagi, L. B., Alvarez, P. P., Godoy, E., & Ramos, V. A. (2003). The control of pre-existing extensional structures on the evolution of the southern sector of the Aconcagua fold and thrust belt, southern Andes. Tectonophysics, 369, 1–19.Google Scholar
  25. Gonzalez, R., & Wetzel, A. (1996). Stratigraphy and paleogeography of the Hauptrogenstein and Klingnau Formations (middle Bajocian to late Bathonian), northern Switzerland. Eclogae Geologicae Helvetiae, 89(2), 695–720.Google Scholar
  26. Guellec, S., Mugnier, J., Tardy, M., & Roure, F. (1990). Neogene evolution of the western Alpine foreland in the light of ECORS data and balanced cross sections. Mémoires de la Société géologique de France, 156, 165–184.Google Scholar
  27. Gygi, R. A. (1969). Zur Stratigraphie der Oxford-Stufe (oberes Jura-System) der Nordschweiz und des süddeutschen Grenzgebietes. Beiträge zur Geologischen Karte der Schweiz, 136, 1–123.Google Scholar
  28. Hindle, D. (2008). How hard were the Jura mountains pushed? Swiss Journal of Geosciences, 101, 305–310.Google Scholar
  29. Homberg, C., Bergerat, F., Philippe, Y., Lacombe, O., & Angelier, J. (2002). Structural inheritance and cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics, 357, 137–158.Google Scholar
  30. Hostettler, B., Reisdorf, A. G., Jaeggi, D., Deplazes, G., Bläsi, H. R., Morard, A., Feist-Burkhardt, S., Waltschew, A., Dietze, V., & Menkveld-Gfeller, U. (2017). Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110.  https://doi.org/10.1007/s00015-016-0250-3 (this issue).
  31. Illies, J. H. (1981). Mechanism of Graben formation. Tectonophysics, 73, 249–266.Google Scholar
  32. Jaeggi, D., & Bossart, P. (2016). Borehole BDS-5 near Derrière-Monterri, Courgenay, Switzerland. Report of the Swiss Geological Survey No. 6. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch. 189 pp.
  33. Jaeggi, D., Laurich, B., Nussbaum, C., Schuster, K., & Connolly, P. (2017). Tectonic structure of the ‘‘Main Fault’’ in the Opalinus Clay, Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110.  https://doi.org/10.1007/s00015-016-0243-2 (this issue).
  34. Jordan, P. (1992). Evidence for large-scale decoupling in the Triassic evaporites of Northern Switzerland—An overview. Eclogae Geologicae Helvetiae, 85, 677–693.Google Scholar
  35. Krabbenhøft, K., & Damkilde, L. (2003). A general non-linear optimization algorithm for lower bound limit analysis. International Journal for Numerical Methods in Engineering, 56, 165–184.Google Scholar
  36. Krabbenhøft, K., & Lyamin, A. V. (2014). Optum G2. Optum Computational Engineering. www.optumce.com.
  37. Krabbenhøft, K., Lyamin, A. V., Hjiaj, M., & Sloan, S. W. (2005). A new discontinuous upper bound limit analysis formulation. International Journal for Numerical Methods in Engineering, 63, 1069–1088.Google Scholar
  38. Lacombe, O., Angelier, J., Byrne, D., & Dupin, J. (1993). Eocene-Oligocene tectonics and kinematics of the Rhine-Saone continental transform zone (Eastern France). Tectonics, 12, 874–888.Google Scholar
  39. Laubscher, H. P. (1961). Die Fernschubhypothese der Jurafaltung. Eclogae Geologicae Helvetiae, 54, 221–280.Google Scholar
  40. Laubscher, H. P. (1963). Erläuterungen zum Geologischen Atlasblatt ‘‘1085 St-Ursanne, 1:25’000’’. Basel: Schweizerische Geologische Kommission. Federal Office of Topography (swisstopo), Wabern, Switzerland.Google Scholar
  41. Laubscher, H. P. (1963). Geologischer Atlas der Schweiz, Atlasblatt 40, 1085 St. Ursanne—Erläuterungen. Basel: Schweizerische Geotechnische Kommission. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch
  42. Laubscher, H. P. (1972). Some overall aspects of Jura dynamics. American Journal of Science, 272, 293–304.Google Scholar
  43. Laubscher, H. P. (1973). Faltenjura und Rheingraben: zwei Grossstrukturen stossen zusammen. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 55, 145–158.Google Scholar
  44. Laubscher, H. P. (1985). The eastern Jura: Relations between thinskinned and basement tectonics, local and regional. Nagra Technischer Bericht, 85-53, 30 pp. Nagra, Wettingen, Switzerland. www.nagra.ch.
  45. Laubscher, H. P. (1987). Die tektonische Entwicklung der Nordschweiz. Eclogae Geologicae Helvetiae, 80, 287–303.Google Scholar
  46. Laubscher, H. P. (1992). Jura kinematics and the Molasse Basin. Eclogae Geologicae Helvetiae, 85, 653–675.Google Scholar
  47. Laubscher, H. P. (2003). Balanced sections and the propagation of décollement: A Jura perspective. Tectonics, 22(6).  https://doi.org/10.1029/2002TC001427.
  48. Lyamin, A., Sloan, S., Krabbenhøft, K., & Hjiaj, M. (2005). Lower bound limit analysis with adaptive remeshing. International Journal for Numerical Methods in Engineering, 63, 1961–1974.Google Scholar
  49. Madritsch, H., Schmid, S. M., & Fabbri, O. (2008). Interactions between thin- and thick-skinned tectonics at the northwestern front of the Jura fold-and-thrust belt (eastern France). Tectonics, 27(5), 1–31.Google Scholar
  50. Maillot, B., & Leroy, Y. (2006). Kink-fold onset and development based on the maximum strength theorem. Journal of the Mechanics and Physics of Solids, 54, 2030–2059.Google Scholar
  51. Marty, D. (2008). Sedimentology, taphonomy, and ichnology of Late Jurassic dinosaur tracks from the Jura carbonate platform (Chevenez—Combe Ronde tracksite, NW Switzerland): Insights into the tidal-flat palaeoenvironment and dinosaur diversity, locomotion, and palaeoecology. Ph.D. dissertation, University of Fribourg, Fribourg, Switzerland, 278 pp.Google Scholar
  52. Mosar, J. (1999). Present-day and future tectonic underplating in the western Swiss Alps: Reconciliation of basement/wrench-faulting and décollement folding of the Jura and Molasse basin in the Alpine foreland. Earth and Planetary Science Letters, 173(3), 143–155.Google Scholar
  53. Nussbaum, C., Amann, F., Aubourg, C., & Bossart, P. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104, 187–210.Google Scholar
  54. Pfiffner, O., Erard, P. F., & Stäuble, M. (1997). Two cross sections through the Swiss Molasse Basin (line E4–E6, W1, W7, W10). In O. A. Pfiffner, P. Lehner, P. Heitzmann, S. Müller, & A. Steck (Eds.), Deep structure of the Swiss Alps, results of NRP 20 (pp. 64–72). Basel: Birkhäuser GmbH.Google Scholar
  55. Pflug, R. (1982). Bau und Entwicklung des Oberrheingrabens (Ertrage der Forschung). Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  56. Philippe, Y. (1995). Rampes latérales et zones de transfert dans les chaȋnes plissées: Géométrie, conditions de formation et pièges structuraux associés. Ph.D. dissertation, Université de Savoie, Chambéry, France, 272 pp.Google Scholar
  57. Reisdorf, A. G., Wetzel, A., Schlatter, R., & Jordan, P. (2011). The Staffelegg formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland. Swiss Journal of Geosciences, 104(1), 97–146.Google Scholar
  58. Rotstein, Y., Schaming, M., & Rousse, S. (2005). Tertiary tectonics of the Dannemarie Basin, upper Rhine graben, and regional implications. Internal Journal of Earth Sciences (Geologische Rundschau), 94, 669–679.Google Scholar
  59. Salençon, J. (2002). De l’élastodsplasticité au calcul à la rupture. Paris: Editions Ecole Polytechnique.Google Scholar
  60. Schaeren, G., & Norbert, J. (1989). Tunnels du Mont Terri et du Mont Russelin—La traversée des « roches à risques »: marnes et marnes à anhydrite. Juradurchquerungen—aktuelle Tunnelprojekte im Jura. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik, 119, 19–24.Google Scholar
  61. Schori, M., Mosar, J., & Schreurs, G. (2015). Multiple detachments during thin-skinned deformation of the Swiss central Jura: a kinematic model across the Chasseral. Swiss Journal of Geosciences, 108, 327–343.Google Scholar
  62. Schumacher, M. E. (2002). Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics, 21, 1006–1022.  https://doi.org/10.1029/2001TC900022.
  63. Smit, J. H. W., Brun, J. P., & Sokoutis, D. (2003). Deformation of brittle-ductile thrust wedges in experiments and nature. Journal of Geophysical Research, 108(B10), ETG9-1.Google Scholar
  64. Sommaruga, A., & Burkhard, M. (1997). Seismic sections through the Alpine foreland—Jura Mountains. In O. A. Pfiffner, P. Lehner, P. Heitzmann, S. Müller, & A. Steck (Eds.), Results of NRP 20—Deep structure of the Swiss Alps (pp. 45–53). Basel: Birkhäuser GmbH.Google Scholar
  65. Souloumiac, P., Krabbenhøft, K., Leroy, Y., & Maillot, B. (2010). Failure in accretionary wedges with the maximum strength theorem: Numerical algorithm and 2D validation. Computational Geosciences, 14(4), 793–811.Google Scholar
  66. Souloumiac, P., Leroy, Y.-M., Krabbenhøft, K., & Maillot, B. (2009). Predicting stress in fault-bend fold by optimization. Journal of Geophysical Research, 114.Google Scholar
  67. Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283, 684–721.Google Scholar
  68. Suppe, J., Connors, C. D., & Zhang, Y. (2004). Shear fault-bend folding. In K. R. McClay (Ed.), Thrust tectonics and hydrocarbon systems: AAPG Memoir 82 (pp. 303–323). Tusla: American Association of Petroleum Geologists.Google Scholar
  69. Suppe, J., & Medwedeff, D. A. (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae, 83, 409–459.Google Scholar
  70. Suter, M. (1978). Geologische Interpretation eines reflexionsseismischen W-E-Profils durch das Delsberger Becken (Faltenjura). Eclogae Geologicae Helvetiae, 71, 267–275.Google Scholar
  71. Swisstopo. (2011). Digital elevation model swissALTI3D. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.swisstopo.ch.
  72. Swisstopo. (2012). GeoCover-geological vector data. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.map.geo.admin.ch.
  73. Ustaszewsi, K., Schuhmacher, M. E., & Schmid, S. (2005). Simultaneous normal faulting and extensional flexuring during rifting: An example from the southernmost Upper Rhine Graben. International Journal of Earth Sciences, 94, 680–696.Google Scholar
  74. Ustaszewski, K., & Schmid, S. M. (2006). Control of pre-existing faults on geometry and kinematics in the northernmost part of the Jura fold-and-thrust belt. Tectonics, 25, TC5003.  https://doi.org/10.1029/2005TC001915.
  75. Ustaszewski, K., & Schmid, S. (2007). Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben—Jura Mountains junction. Swiss Journal of Geosciences, 100, 293–312.Google Scholar
  76. von Hagke, C., Oncken, O., & Evseev, S. (2014). Critical taper analysis reveals lithological control of variations in detachment strength: An analysis of the Alpine basal detachment (Swiss Alps). Geochemistry Geophysics Geosystems, 15(1), 176–191.Google Scholar
  77. Wetzel, A., & Allia, V. (2003). Der Opalinuston in der Nordschweiz: lithologie und Ablagerungsgeschichte. Eclogae Geologicae Helvetiae, 96, 451–469.Google Scholar
  78. Ziegler, P. A. (1992). European Cenozoic rift system. Tectonophysics, 208, 91–111.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christophe Nussbaum
    • 1
  • Armelle Kloppenburg
    • 2
  • Typhaine Caër
    • 3
  • Paul Bossart
    • 1
  1. 1.Swiss Geological SurveyFederal Office of Topography SwisstopoWabernSwitzerland
  2. 2.4DGeo/Structural GeologyThe HagueThe Netherlands
  3. 3.Géosciences et Environnement Cergy (GEC)Université de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations