Concept for an Integrated Planning of Heat Flows in Production Systems

  • Denis Kurle
Part of the Sustainable Production, Life Cycle Engineering and Management book series (SPLCEM)


The introduction of an integrated planning concept for heat flows is motivated by the identified discrepancy between existing approaches and defined requirements. To close this discrepancy and further elaborate on this issue, the chapter first formulates different objectives, requirements and potential stakeholders for an appropriate concept (Sect. 4.1). Based on those objectives and requirements, a system perspective is derived which is capable of including and reflecting all relevant system levels (Sect. 4.2). Those aspects are broad together in the developed model concept which is embedded into a problem solving process, provides various models as well as their interactions to perform diverse evaluations, and enhance an interdisciplinary system understanding. The models are described regarding both the conceptual logic as well as considerations for implementation (Sect. 4.3). In more detail, the existing heat flows in production systems demonstrate the necessity to use an integrated approach in order to gain a sound system understanding. Thus, it is described how the different system entities can be modeled (Sect. 4.4). Different analysis and visualization methods per system level further facilitate the understanding of individual system entity’s performance (Sect. 4.5) as well as their impact and repercussions on other system levels. Those methods interact with the system entity models. The chapter closes with an application procedure explaining how the concept can be used in practice (Sect. 4.6).


  1. Alvandi S, Li W, Schönemann M, Kara S, Herrmann C (2016) Economic and environmental value stream map (e2vsm) simulation for multi-product manufacturing systems. Int J Sustain Eng 9(6):354–362.
  2. Al-Waked R, Behnia M (2007) Enhancing performance of wet cooling towers. Energy Conv Manag 47:2638–2648CrossRefGoogle Scholar
  3. Anantharaman R, Nastad I, Nygreen B, Gundersen T (2010) The sequential framework for heat exchanger network synthesis - the minimum number of units sub-problem. Comput Chem Eng 34(11):1822–1830CrossRefGoogle Scholar
  4. Arning JP, Peters W, Rieger B, Schmidt T, Schopf N, Sternberg J (2009) SaustformelnGoogle Scholar
  5. Baehr HD (2014) Thermodynamik: Eine Einfhrung in die Grundlagen und ihre technischen Anwendungen, 2nd edn. Springer Verlag, BerlinGoogle Scholar
  6. Banks J, Carson JS, Nelson BL, Nicol DM (2010) Discrete-event system simulation. International Series in Industrial and Systems Engineering, 5th edn. Prentice-Hall. Pearson. ISBN 978-0136062127Google Scholar
  7. Bauernhansl T, ten HM, Vogel-Heuser B (2014) Industrie 4.0 in Produktion, Automatisierung und Logistik - Anwendung, Technologien, Migration. Springer Fachmedien. ISBN 978-3-658-04682-8.
  8. Becker R (2006) Optimierung thermischer Systeme in dezentralen Energieversorgungsanlagen. Technische Universtität Dortmund, PhdGoogle Scholar
  9. Berliner P (1975) Kühltürme. Springer, Grundlagen der Berechnung und KonstruktionCrossRefGoogle Scholar
  10. Bierbaum U, Hüttner J (2004) Druckluft Kompendium. Hoppenstedt Bonnier Zeitschriften GmbH, ISBN, p 3935772114Google Scholar
  11. Birolini A (2010) Reliability engineering - theory and practice. Springer, Berlin.
  12. Böckh P, Stripf M (2015) Technische Thermodynamik: Ein beispielorientiertes Einführungsbuch, 2 edn. Springer VerlagGoogle Scholar
  13. Bogdanski G, Schönemann M, Thiede S, Andrew S, Herrmann C (2013) An extended energy value stream approach applied on the electronics industry. Springer, Berlin, pp 65–72. ISBN 978-3-642-40352-1.
  14. Böge A, Böge W (2014) Handbuch Maschinenbau. Springer Vieweg. ISBN 978-3-658-06597-3.
  15. Bommes L, Fricke J, Grundmann R (2002) Ventilatoren. Vulkan Verlag, 2 edn. ISBN 3802732006Google Scholar
  16. Boschert S, Rosen R (2016) Digital twin—the simulation aspect. Springer International Publishing, Cham, pp 59–74. ISBN 978-3-319-32156-1.
  17. Bryan J (1990) International status of thermal error research 39:645–656. ISSN 00078506.
  18. Byrne G, Scholta E (1993) Environmentally clean machining processes - a strategic approach. 42:471–474. ISSN 00078506. (Byrne G, Scholta E (1993) Environmentally clean machining processes annals, 42:471–474)
  19. Cerda J, Westerberg AW (1983) Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations. Chem Eng Sci 32(10):1723–1740CrossRefGoogle Scholar
  20. Cerda J, Westerberg AW, Mason D, Linnhoff B (1983) Minimum utility usage in heat exchanger network synthesis a transportation problem. Chem Eng Sci 38(3):373–387CrossRefGoogle Scholar
  21. Chen Y, Grossmann IE, Miller DC (2014) Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis.
  22. Ciric A, Floudas C (1991) Heat exchanger network synthesis without decomposition. Comput Chem Eng 15(6):385–396Google Scholar
  23. Dahl D, Luke A (2013) Tropfenabscheidung. In: VDI-Wrmeatlas. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, pp 1439–1445Google Scholar
  24. Devoldere T, Dewulf W, Deprez W, Willems B, Duflou JR (2007) Improvement potential for energy consumption in discrete part production machines. Springer London, pp 311–316. ISBN 978-1-84628-935-4.
  25. Dietmair A, Verl A, Eberspaecher P (2009) Predictive simulation for model based energy consumption optimisation in manufacturing system and machine control. Flex Autom Intell Manuf FAIM 2009:226–233Google Scholar
  26. DIN 8580 (2003) Din norm 8580:2003-09Google Scholar
  27. Domschke W, Drexl Klein R, Scholl A (2015) Einführung in operations research. Springer, Berlin. ISBN 978-3-662-48215-5CrossRefzbMATHGoogle Scholar
  28. Düniß W (1968) Spanen. In Institut für Fachschulwesen der Deutschen Demokratischen Republik, editor, Trennen, Fertigungstechnik, pp 23–56. VEB Verlag Technik BerlinGoogle Scholar
  29. Effenberger H (2000) Dampferzeugung. Springer, VDI-BuchCrossRefGoogle Scholar
  30. Eisele C (2014) Simulationsgestützte Optimierung des elektrischen Energiebedarfs spanender Werkzeugmaschinen. Shaker. ISBN 978-3-8440-3270-3Google Scholar
  31. Eisele C, Abele E (2013) Energieeffiziente Produktionsmaschinen durch Simulation in der Produktentwicklung. Technische Informationsbibliothek u. Universitätsbibliothek.
  32. El-Halwagi MM (2012) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Elsevier/Butterworth-Heinemann. ISBN 978-1-85617-744-3Google Scholar
  33. Erlach K (2007) Wertstromdesign. Springer, BerlinGoogle Scholar
  34. Erlach K, Westkämper E (2009) Energiewertstrom - Der Weg zur energieeffizienten Fabrik. Frauenhofer VerlagGoogle Scholar
  35. Fitzner K, Rakoczy T (2008) Bauelemente Raumtechnischer Anlagen. In: Rietschel H (ed) Raumklimatechnik, vol 2. Raumluft- und Raumkühltechnik. Springer, Berlin, pp 205–404Google Scholar
  36. Floudas CA, Ciric AR, Grossmann IE (1986) Automatic synthesis of optimum heat exchanger network configurations. AIChE J 32(2):276–290CrossRefGoogle Scholar
  37. Foss RS (2005) Optimizing the compressed air system. Energy Eng 102(1):49–60.
  38. Fowler JW, Rose O (2004) Grand challenges in modeling and simulation of complex manufacturing systems. Simulation 80(9):469–476CrossRefGoogle Scholar
  39. Furman KC, Sahinidis NV (2002) A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century. Indust Eng Chem Res, 41(10):2335–2370. ISSN 0888-5885.
  40. Furman KC, Sahinidis NV (2001) Computational complexity of heat exchanger network synthesis. Comput Chem Eng 25(9–10):1371–1390CrossRefGoogle Scholar
  41. Geldermann J (2014) Anlagen- und Energiewirtschaft - Kosten- und Investitionsabschtzung sowie Technikbewertung von Indistrieanlagen. Verlag Franz VahlenGoogle Scholar
  42. Gontarz A, Züst S, Weiss L, Wegener K (2012) Energetic machine tool modeling approach for energy consumption predictionGoogle Scholar
  43. Granet I, Bluestein M (2014) Thermodynamics and heat power, 8th edn. CRC Press, Boca RatonGoogle Scholar
  44. Greschke P, Schönemann M, Thiede S, Herrmann C (2014) Matrix structures for high volumes and flexibility in production systems. Procedia CIRP 17:160–165. ISSN 2212-8271.
  45. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. Springer International Publishing, Switzerland (Cham). ISBN 978-3-319-38756-7.
  46. Grossmann IE, Guillén-Gosálbez G (2010) Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput Chem Eng 34(9):1365–1376Google Scholar
  47. Großmann K, Jungnickel G (2006) Prozessgerechte Bewertung des thermischen Verhaltens von Werkzeugmaschinen. Praxis, Lehrstuhl für Werkzeugmaschinen, Lehre, Forschung. ISBN 3-86005-547-XGoogle Scholar
  48. Grossmann IE, Caballero JA, Yeomans H (1999) Mathematical programming approaches to the synthesis of chemical process systems. Korean J Chem Eng 16(4):407–426CrossRefGoogle Scholar
  49. Grossmann I, Kravanja Z, Yee TF (1990) Simultaneous optimization models for heat integration. iii. Optimization of process flowsheets and heat exchanger networks. Comput Chem Eng 14(1185):Google Scholar
  50. Grundersen T (2000) A process integration primer - implementing agreement on process integration. International Energy Agency, SINTEF Energy Research, TrondheimGoogle Scholar
  51. Grundmann R, Schönholtz F (2013) Grundlagen der ventilatorentechnik.
  52. Gundersen T, Traedal P, Hashemi-Ahmady A (1997) Improved sequential strategy for the synthesis of near-optimal heat exchanger networks. Comput Chem Eng 21:59–64CrossRefGoogle Scholar
  53. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: Leuven KU (ed) Mechanical Engineering Department, Proceedings of 13th CIRP international conference on life cycle engineering, pp 623–627Google Scholar
  54. Hancox EP (2005) Derksen RW (2005) Optimization of an industrial compressor supply system. Springer, Berlin, pp 339–351. ISBN 978-3-540-31306-9.
  55. Harting P (1977) Zur Einheitlichen Berechnung von Khltrmen. Dissertation, Technischen Universität BraunschweigGoogle Scholar
  56. Hasnain S (1998) Review on sustainable thermal energy storage technologies, part i: heat storage materials and techniques. Energy Conv Manag 39(11):1127–1138. ISSN 0196-8904.
  57. Heinrich C, Wittig S, Albring P, Richter L, Safarik M, Böhm U, Hantsch A (2014) Nachhaltige Kälteversorgung in Deutschland an den Beispielen Gebäudeklimatisierung und Industrie. ISSN 1862-4359Google Scholar
  58. Heinzl B, Dorn C, Dimitriou AA (2012) Object-oriented modelling of machine tools for energy efficiency analysis in production. IFAC Proc Vol 45(2):1300–1303. ISSN 1474-6670.
  59. Helbing K, Mund H, Reichel M (2010) Handbuch Fabrikprojektierung: mit 331 Tabellen. Springer, Berlin. ISBN 978-3-642-01617-2CrossRefGoogle Scholar
  60. Held H-D, Schnell H (2000) Kühlwasser. Verfahren und Systeme der Aufbereitung, Behandlung und Kühlung von Süwasser, Brackwasser, Meerwasser in der Industrie. Vulkan Verlag, 5 ednGoogle Scholar
  61. Herrmann C, Thiede S, Kara S, Hesselbach J (2011) Energy oriented simulation of manufacturing systems concept and application. CIRP Ann Manufact Technol 60(1):45–48. ISSN 0007-8506.
  62. Hesselbach J (2012) Energie- und klimaeffiziente Produktion. Springer Vieweg. ISBN 978-3-8348-0448-8. 10.1007/978-3-8348-9956-9Google Scholar
  63. Hesselbach J, Herrmann R (2008) Christoph Detzer, Martin L, Thiede S, Lüdemann B. Energy Efficiency through optimized coordination of production and technical building services 29:624–629Google Scholar
  64. Kagermann H (2014) Industrie 4.0 und smart services, pp 243–248. Springer, Berlin. ISBN 978-3-642-54411-8.
  65. Keim DA, Mansmann F, Schneidewind J, Ziegler H (2006) Challenges in visual data analysis. In: Tenth international conference on information visualization, 2006. IV 2006. IEEE, New York, pp 9–16Google Scholar
  66. Keim D, Kohlhammer J, Ellis G, Mansmann F (2010) Mastering the information age solving problems with visual analytics. Eurographics AssociationGoogle Scholar
  67. Kemp IC (2011) Pinch analysis and process integration: a user guide on process integration for the efficient use of energy. Butterworth-HeinemannGoogle Scholar
  68. Kirk A (2016) Data visualisation. SAGE Publications, New YorkGoogle Scholar
  69. Klemeš JJ (2013) Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Elsevier, AmsterdamCrossRefGoogle Scholar
  70. Klocke F, König W (2008) Fertigungsverfahren, volume 1 of VDI-Buch, 8 edn. Springer, Berlin. ISBN 978-3-540-23458-6.
  71. Kocis GR, Grossmann IE (1989) A modelling and decomposition strategy for the minlp optimization of process flowsheets. Comput Chem Eng 13(7):797–819Google Scholar
  72. Krichel S, Hülsmann S, Hirzel S, Elsland R, Sawodny O (2012) Mehr klarheit bei der druckluft: Exergieflussdiagramme als neue grundlage fr effizienzbetrachtungen bei druckluftanlagen. O + P : Zeitschrift fr Fluidtechnik 56:28–32. ISSN 1614-9602Google Scholar
  73. Krist T (1997) Formeln und Tabellen Grundwissen Technik: Daten und Begriffe fr Techniker und Ingenieure, 13 edn. Springer/Teubner VerlagGoogle Scholar
  74. Kröger D (2004) Air-cooled heat exchangers and cooling towers: thermal-flow performance evaluation and design, 2 edn. PennWell VerlagGoogle Scholar
  75. Kurle D, Blume S, Zurawski T, Thiede S (2016a) Simulative assessment of agent based production planning and control strategies. Procedia CIRP 57:439–444.
  76. Kurle D, Schulze C, Herrmann C, Thiede S (2016b) Unlocking waste heat potentials in manufacturing. Procedia CIRP, The 23rd CIRP Conference on Life Cycle Engineering 48:289–294. ISSN 2212-8271.
  77. Law AM (2014) Simulation modeling and analysis, 5th edn. McGraw-Hill Education, New York. ISBN 978-0073401324Google Scholar
  78. Lechner C, Seume J (2010) Stationäre Gasturbinen, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  79. Leobner I (2016) Modeling of energy systems for complex simulations. Dissertation, Technischen Universität WienGoogle Scholar
  80. LfU. Linnhoff March Limited (2003) Mit der Pinch-Technologie Prozesse und Anlagen optimieren: Eine Methode des betrieblichen Energie-und Stoffstrommanagements. Landesanstalt für Umweltschutz Baden-WürttembergGoogle Scholar
  81. Li W (2015) Efficiency of manufacturing processesGoogle Scholar
  82. Li W, Thiede S, Kara S, Herrmann C (2017) A generic sankey tool for evaluating energy value stream in manufacturing systems. Procedia CIRP, 61:475 – 480. ISSN 2212-8271. (The 24th CIRP Conference on Life Cycle Engineering)
  83. Ludwig J (2012) Energieeffizienz durch Planung betriebsübergreifender Prozessintegration mit der Pinch-Analyse. KIT Scientific Publishing, Karlsruhe, Karlsruhe. ISBN 9783866448834Google Scholar
  84. Madanchi N, Kurle D, Winter M, Thiede S, Herrmann C (2015) Energy efficient process chain: the impact of cutting fluid strategies. Procedia CIRP 29:360–365. ISSN 2212-8271.
  85. Martin H (2006) Einführung in die Lehre von der Wärmeübertragung. In: Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, editor, VDI-Wärmeatlas, VDI-Buch, 10 edn. pp A1–A27. Springer, Berlin. ISBN 978-3-540-25504-8Google Scholar
  86. Maurer T (2011) Hintergrundinformation zur merkelzahl.
  87. May C, Schimek P (2015) Total productive management: Grundlagen und Einfhrung von TPM oder wie Sie operational excellence erreichen, 2 edn. CETPM Publishing. ISBN 978-3940775054Google Scholar
  88. Merlin K, Soto J, Delaunay D, Traonvouez L (2016) Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Appl Energy 183:491–503. ISSN 0306-2619.
  89. Morvay Z, Gvozdenac D (2008) Applied industrial energy and enviromental management. Wiley & Sons Ltd., New JerseyCrossRefGoogle Scholar
  90. Mousavi S, Kara S, Kornfeld B (2014) Energy efficiency of compressed air systems. Procedia CIRP 15:313–318. ISSN 2212-8271.
  91. Müller B (2004) Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen SchnittgeschwindigkeitenGoogle Scholar
  92. Müller E, Engelmann J, Löffler T, Jörg S (2009) Energieeffiziente Fabriken planen und betreiben. Springer, BerlinCrossRefGoogle Scholar
  93. Nayyar M, King R, Crocker S (2000) Piping handbook. McGraw-HillGoogle Scholar
  94. NTsoukpoe KE, Liu H, Pierrs NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396, 2009. ISSN 1364-0321.
  95. U.S.D. of Energy. Compressed Air Market Assessment (2014)Google Scholar
  96. Papoulias SA, Grossmann IE (1983) A structural optimization approach in process synthesis ii: heat recovery networks. Comput Chem Eng 7(6):707–721CrossRefGoogle Scholar
  97. Pehnt M (2010)Google Scholar
  98. Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook, 7 edn. McGraw-Hill (Perry’s chemical engineers’ platinum edition)Google Scholar
  99. Pfeifer H, Schmiedel H (1997) Grundwissen Experimentalphysik. Teubner VerlagGoogle Scholar
  100. Posselt G (2016) Towards energy transparent factories, Sustainable production, life cycle engineering and management edition. Springer International Publishing, Berlin.
  101. Posselt G, Fischer J, Heinemann T, Thiede S, Alvandi S, Weinert N, Kara S, Herrmann C (2014) Extending energy value stream models by the tbs dimension applied on a multi product process chain in the railway industry. Procedia CIRP 15:80–85. ISSN 2212-8271.
  102. Preuß (2011). Energiebedarf fr kältetechnik in deutschlandGoogle Scholar
  103. Rabe M, Spiekermann S, Wenzel S (2008) Verifikation und Validierung für die Simulation in Produktion und Logistik. Springer, Berlin. ISBN 978-3-540-35281-5.
  104. Radgen P, Blaustein E (2001) Compressed air systems in the European union, 1st edn. LOG_X Verlag GmbH, Stuttgart. ISBN 3-932298-16-0Google Scholar
  105. Rajan GG (2008) Optimizing energy efficiency in industry. McGray-Hill Eduction - EuropeGoogle Scholar
  106. Rose O, März L (2011) Simulation. In: Simul. und Optimierung Produktion und Logistik. Springer, Berlin, pp 13–19.
  107. Rother M, Shook J (2003) Learning to see: value-stream mapping to create value and eliminate Muda: value stream mapping to add value and eliminate Muda. Lean Enterprise Institute. ISBN 0-9667843-0-8Google Scholar
  108. Ruppelt E (2003) Druckluft-Handbuch, 4th edn. Vulkan-Verlag, EssenGoogle Scholar
  109. Saidur R, Rahim N, Hasanuzzaman M (2010) A review on compressed-air energy use and energy savings. Renew Sustain Energy Rev 14(4):1135–1153. ISSN 1364-0321.
  110. Schenk M, Wirth S, Müller E (2014) Fabrikplanung und Fabrikbetrieb. Springer, Berlin. ISBN 978-3-642-05458-7.
  111. Schlei-Peters I, Kurle D, Wichmann MG, Thiede S, Herrmann C, Spengler TS (2015) Assessing combined water-energy-efficiency measures in the automotive industry. Procedia CIRP 29:50–55. ISSN 2212-8271.
  112. Schlei-Peters I, Wichmann MG, Matthes I-G, Gundlach F-W, Spengler TS (2017) Integrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systems. J Indust Ecol. ISSN 1530-9290.
  113. Schönemann M (2017) Multiscale simulation approach for battery production systems, Sustainable production, life cycle engineering and management edition. Springer International Publishing, Berlin.
  114. Schönemann M, Herrmann C, Greschke P, Thiede S (2015) Simulation of matrix-structured manufacturing systems. J Manufact Syst, Part 1 37:104–112. ISSN 0278-6125.
  115. Schönemann M, Kurle D, Herrmann C, Thiede S (2016) Multi-product evsm simulation. Procedia CIRP 41:334–339. ISSN 2212-8271.
  116. Schrems S (2014) Methode zur modellbasierten Integration des maschinenbezogenen Energiebedarfs in die Produktionsplanung. Schriftenreihe des PTW, Shaker. ISBN 978-3-8440-2999-4Google Scholar
  117. Schulze T (2015) Gleichungsorientierte Modellierung der Wärme- und Stoffübertragungsprozesse in Verdunstungskühltürmen. Dissertation, Technischen Universität DresdenGoogle Scholar
  118. Seow Y, Rahimifard S (2011) A framework for modelling energy consumption within manufacturing systems 4:258–264. ISSN 17555817.
  119. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages. IEEE, New York, pp 336–343Google Scholar
  120. Smith E, Pantelides C (1995) Design of reaction/separation networks using detailed models. Comput Chem Eng 19:83–88CrossRefGoogle Scholar
  121. Spirax S (2006) Grundlagen der Dampf- und KondensattechnologieGoogle Scholar
  122. Stephan P, Schaber K, Ka S, Mayinger F (2006) Thermodynamik - Grundlagen und technische Anwendungen, 17th edn. Springer, LehrbuchGoogle Scholar
  123. Stjepandić J, Wognum N, Verhagen WJC (2005) Concurrent engineering in the 21st century - foundations, evelopments and challenges. Springer International Publishing, Berlin. ISBN 978-3-319-13775-9.
  124. Stull R (2011) Wet-bulb temperature from relative humidity and air temperature. J Appl Meteorol Climatol 50:2267–2269CrossRefGoogle Scholar
  125. Theißing M (2009) Instationarität von industrieller Abwärme als limitierender Faktor bei der Nutzung und Integration in Wärmeverteil- und Wärmenutzungssystemen.
  126. Thiede S (2012) Energy efficiency in manufacturing systems. Springer, Berlin. ISBN 978-3-642-25913-5.
  127. Umweltbundesamt (2015) Entwicklung der spezifischen Kohlendioxid- Emissionen des deutschen Strommix in den Jahren 1990 bis 2014Google Scholar
  128. VDI (2014) 3633 sheet 1: Simulation von logistik-, materialfluss- und produktionssystemen grundlagen (engl.: Simulation of systems in materials handling, logistics and production fundamentals)Google Scholar
  129. VDMA 24659 (2015) Wirtschaftlichkeit und partieller co2-fuabdruck von verdunstungskühlern: Leitfaden zur berechnungGoogle Scholar
  130. Verl A, Abele E, Heisel U, Dietmair A, Eberspächer P, Rahäuser R, Schrems S, Braun S (2011) Modular modeling of energy consumption for monitoring and control. In: J. Hesselbach, C. Herrmann (eds), Glocalized Solutions for Sustainability in Manufacturing, pp 341–346. Technische Universität Braunschweig. Springer, Berlin. ISBN 978-3-642-19691-1Google Scholar
  131. Victor H, Müller M, Opferkuch R, Zerspantechnik, volume 2 of Weiterbildung Technik. Springer, Berlin (1982) ISBN 0-387-10797-5. Müller, Michael (VerfasserIn) Opferkuch, Rainer (VerfasserIn)Google Scholar
  132. Wagner W (2010) Wasser und Wasserdampf im Anlagenbau. Vogel Business Media, 2 ednGoogle Scholar
  133. Weck M, Brecher C (2006) Werkzeugmaschinen 5. VDI-Buch. Springer Vieweg.
  134. Weinert N, Chiotellis S, Seliger G (2011) Methodology for planning and operating energy-efficient production systems. CIRP Ann Manufact Technol 60(1):41–44. ISSN 0007-8506.
  135. Wenzel S, Wei M, Collisi-Böhmer S, Pitsch H, Rose O (2008) Qualitätskriterien für die Simulation in Produktion und Logistik. Springer, Berlin, vdi-buch edition. ISBN 978-3-540-35272-3.
  136. Westkämper E, Warnecke H-J, Decker M (2006) Einführung in die Fertigungstechnik. Teubner, 7., bearb. und erg. aufl. edition. ISBN 9783835101104Google Scholar
  137. Westkämper E, Zahn E (2009) Wandlungsfhige Produktionsunternehmen: Das Stuttgarter Unternehmensmodell, 1 edn. Springer, Berlin.
  138. Wiendahl H-P, Maraghy HAE, Nyhuis P, Z\(^{..}\)h M, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing - classification, design and operation. CIRP Ann Manufact Technol 56(2):783–809. ISSN 0007-8506.
  139. Wischhusen S (2005) Dynamische Simulation zur wirtschaftlichen Bewertung von komplexen Engergiesystemen. Cuvillier, ISBN, p 9783865376190Google Scholar
  140. I. XENERGY (2001) Compressed air efficiency servicesGoogle Scholar
  141. Yuan CY, Zhang T, Rangarajan A, Dornfeld D, Ziemba B, Whitbeck R (2006) A decision-based analysis of compressed air usage patterns in automotive manufacturing. J Manufact Syst 25(4):293–300. ISSN 0278-6125.
  142. Zahlan J, Asfour S (2015) A multi-objective approach for determining optimal air compressor location in a manufacturing facility. J Manufact Syst 35:176–190. ISSN 0278-6125.
  143. Züst S, Gontarz A, Pavliček F, Mayr J, Wegener K (2015) Model based prediction approach for internal machine tool heat sources on the level of subsystems 28:28–33. ISSN 22128271.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Machine Tools and Production TechnologyTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations