Skip to main content

Current Views on Melasma

  • 1255 Accesses

Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Melasma is a common acquired hyperpigmentary disorder of the face mostly in women with darker skin types. Chronic sun exposure, genetic influences, and female sex hormones have been addressed as major etiological factors. The pathogenesis of melasma is not fully understood, but current studies suggest that endogenous or exogenous stimuli may stimulate the microenvironment, leading to the release of various mediators that activate melanocytes in the development of melasma. In melasma skin, not only melanocytes but other actors, especially dermal components such as photoaged fibroblasts or vasculature, most likely play a key role in the development and in relapses of melasma. Treatment of melasma is difficult because it is recalcitrant to therapy and frequently recurs, even after successful clearance. There are various treatment options, usually in combination with topical depigmenting agents, laser or light therapies, as well as systemic tranexamic acid.

Keywords

  • Melasma
  • UV
  • Sex hormones
  • Fibroblasts
  • Vasculature
  • Tranexamic acid
  • Facial pigmentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70419-7_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-70419-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2

References

  1. Sheth VM, Pandya AG. Melasma: a comprehensive update: part I. J Am Acad Dermatol. 2011;65(4):689–97.

    CrossRef  PubMed  Google Scholar 

  2. Hexsel D, Rodrigues T, Dal’forno T, Zechmeister-Prado D, Lima M. Melasma and pregnancy in southern Brazil. J Eur Acad Dermatol Venereol. 2009;23(3):367–8.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Moin A, Jabery Z, Fallah N. Prevalence and awareness of melasma during pregnancy. Int J Dermatol. 2006;45(3):285–8.

    CrossRef  PubMed  Google Scholar 

  4. Sarkar R, Puri P, Jain RK, Singh A, Desai A. Melasma in men: a clinical, aetiological and histological study. J Eur Acad Dermatol Venereol. 2010;24(7):768–72.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Ortonne JP, Arellano I, Berneburg M, Cestari T, Chan H, Grimes P, et al. A global survey of the role of ultraviolet radiation and hormonal influences in the development of melasma. J Eur Acad Dermatol Venereol. 2009;23(11):1254–62.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Tamega AA, Miot LD, Bonfietti C, Gige TC, Marques ME, Miot HA. Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women. J Eur Acad Dermatol Venereol. 2013;27(2):151–6.

    CrossRef  Google Scholar 

  7. Hexsel D, Lacerda DA, Cavalcante AS, Filho CA, Kalil CL, Ayres EL, et al. Epidemiology of melasma in Brazilian patients: a multicenter study. Int J Dermatol. 2014;53(4):440–4.

    CrossRef  PubMed  Google Scholar 

  8. Achar A, Rathi SK. Melasma: a clinico-epidemiological study of 312 cases. Indian J Dermatol. 2011;56(4):380–2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Sanchez NP, Pathak MA, Sato S, Fitzpatrick TB, Sanchez JL, Mihm MC Jr. Melasma: a clinical, light microscopic, ultrastructural, and immunofluorescence study. J Am Acad Dermatol. 1981;4(6):698–710.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Madke B, Kar S, Yadav N, Bonde P. Extrafacial melasma over forearms. Indian Dermatol Online J. 2016;7(4):344–5.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Grimes PE, Yamada N, Bhawan J. Light microscopic, immunohistochemical, and ultrastructural alterations in patients with melasma. Am J Dermatopathol. 2005;27(2):96–101.

    CrossRef  PubMed  Google Scholar 

  12. Sarvjot V, Sharma S, Mishra S, Singh A. Melasma: a clinicopathological study of 43 cases. Indian J Pathol Microbiol. 2009;52(3):357–9.

    CrossRef  PubMed  Google Scholar 

  13. Lawrence N, Cox SE, Brody HJ. Treatment of melasma with Jessner’s solution versus glycolic acid: a comparison of clinical efficacy and evaluation of the predictive ability of Wood’s light examination. J Am Acad Dermatol. 1997;36(4):589–93.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Kang HY, Bahadoran P, Suzuki I, Zugaj D, Khemis A, Passeron T, et al. Vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution. Exp Dermatol. 2010;19(8):e228–33.

    CrossRef  PubMed  Google Scholar 

  15. Kang WH, Yoon KH, Lee ES, Kim J, Lee KB, Yim H, et al. Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 2002;146(2):228–37.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Kim EH, Kim YC, Lee ES, Kang HY. The vascular characteristics of melasma. J Dermatol Sci. 2007;46(2):111–6.

    CAS  CrossRef  PubMed  Google Scholar 

  17. Noh TK, Choi SJ, Chung BY, Kang JS, Lee JH, Lee MW, et al. Inflammatory features of melasma lesions in Asian skin. J Dermatol. 2014;41(9):788–94.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Lakhdar H, Zouhair K, Khadir K, Essari A, Richard A, Seite S, et al. Evaluation of the effectiveness of broad-spectrum sunscreen in the prevention of chloasma in pregnant women. J Eur Acad Dermatol Venereol. 2007;21(6):738–42.

    CAS  CrossRef  PubMed  Google Scholar 

  19. V_azquez M, S_anchez JL. The efficacy of a broad-spectrum sunscreen in the treatment of melasma. Cutis 1983;32(1):92, 95–6.

    Google Scholar 

  20. Hernández-Barrera R, Torres-Alvarez B, Castanedo-Cazares JP, Oros-Ovalle C, Moncada B. Solar elastosis and presence of mast cells as key features in the pathogenesis of melasma. Clin Exp Dermatol. 2008;33(3):305–8.

    CrossRef  PubMed  Google Scholar 

  21. Suzuki I, Kato T, Motokawa T, Tomita Y, Nakamura E, Katagiri T. Increase of pro-opiomelanocortin mRNA prior to tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, Pmel-17/gp100, and P-protein mRNA in human skin after ultraviolet B irradiation. J Invest Dermatol. 2002;118(1):73–8.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Im S, Kim J. On WY, Kang WH. Increased expression of alpha-melanocyte-stimulating hormone in the lesional skin of melasma. Br J Dermatol. 2002;146(1):165–7.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Kovacs D, Cardinali G, Aspite N, Cota C, Luzi F, Bellei B, et al. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br J Dermatol. 2010;163(5):1020–7.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Chen N, Hu Y, Li WH, Eisinger M, Seiberg M, Lin CB. The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines. Exp Dermatol 2010;19(10):865–872.

    CrossRef  Google Scholar 

  25. Kang HY, Hwang JS, Lee JY, Ahn JH, Kim JY, Lee ES, et al. The dermal stem cell factor and c-kit are overexpressed in melasma. Br J Dermatol. 2006;154(6):1094–9.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004;17(2):96–110.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Kim YJ, Kang HY. Pigmentation after using topical tacrolimus to treat lichen sclerosus: possible role of stem cell factor. J Am Acad Dermatol. 2007;57(5 Suppl):S125–7.

    CrossRef  PubMed  Google Scholar 

  28. Hasegawa K, Fujiwara R, Sato K, Shin J, Kim SJ, Kim M, et al. Possible involvement of keratinocyte growth factor in the persistence of hyperpigmentation in both human facial solar lentigines and melasma. Ann Dermatol. 2015;27(5):626–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Kim M, Han JH, Kim JH, Park TJ, Kang HY. Secreted frizzled-related protein 2 (sFRP2) functions as a Melanogenic stimulator; the role of sFRP2 in UV-induced Hyperpigmentary disorders. J Invest Dermatol. 2016;136(1):236–44.

    CAS  CrossRef  PubMed  Google Scholar 

  30. Choi JR, Won CH, ES O, An J, Chang SE. The degree of erythema in melasma lesion is associated with the severity of disease and the response to the low-fluence Q-switched 1064-nm Nd:YAG laser treatment. J Dermatolog Treat. 2013;24(4):297–9.

    CrossRef  PubMed  Google Scholar 

  31. Regazzetti C, De Donatis GM, Ghorbel HH, Cardot-Leccia N, Ambrosetti D, Bahadoran P, et al. Endothelial cells promote pigmentation through Endothelin receptor B activation. J Invest Dermatol. 2015;135(12):3096–104.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Park JY, Kim M, Park TJ, Kang HY. TGFβ1 derived from endothelial cells inhibits melanogenesis. Pigment Cell Melanoma Res. 2016;29(4):477–80.

    CrossRef  PubMed  Google Scholar 

  33. Lee DJ, Park KC, Ortonne JP, Kang HY. Pendulous melanocytes: a characteristic feature of melasma and how it may occur. Br J Dermatol. 2012;166(3):684–6.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Torres-Álvarez B, Mesa-Garza IG, Castanedo- Cázares JP, Fuentes-Ahumada C, Oros-Ovalle C, Navarrete-Solis J, et al. Histochemical and immunohistochemical study in melasma: evidence of damage in the basal membrane. Am J Dermatopathol. 2011;33(3):291–5.

    CrossRef  PubMed  Google Scholar 

  35. Iriyama S, Ono T, Aoki H, Amano S. Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal–epidermal junction. J Dermatol Sci. 2011;64(3):223–8.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Park GH, Lee JH, Choi JR, Chang SE. Does altered basement membrane of melasma lesion affect treatment outcome in Asian skin? Am J Dermatopathol. 2013;35(1):137–8.

    CrossRef  Google Scholar 

  37. Lieberman R, Moy L. Estrogen receptor expression in melasma: results from facial skin of affected patients. J Drugs Dermatol. 2008;7(5):463–5.

    PubMed  Google Scholar 

  38. Jian D, Jiang D, Su J, Chen W, Hu X, Kuang Y, et al. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating upregulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids. 2011;76(12):1297–304.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Kim NH, Cheong KA, Lee TR, Lee AY. PDZK1 upregulation in estrogen-related hyperpigmentation in melasma. J Invest Dermatol. 2012;132(11):2622–31.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Kippenberger S, Loitsch S, Solano F, Bernd A, Kaufmann R. Quantification of tyrosinase, TRP-1, and Trp-2 transcripts in human melanocytes by reverse transcriptase-competitive multiplex PCR--regulation by steroid hormones. J Invest Dermatol. 1998;110(4):364–7.

    CAS  PubMed  Google Scholar 

  41. Jee SH, Lee SY, Chiu HC, Chang CC, Chen TJ. Effects of estrogen and estrogen receptor in normal human melanocytes. Biochem Biophys Res Commun. 1994;199(3):1407–12.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Kang HY, Suzuki I, Lee DJ, Ha J, Reiniche P, Aubert J, et al. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma. J Invest Dermatol. 2011;131(8):1692–700.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, et al. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res. 2014;27(1):72–81.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol. 2014;134(4):1075–82.

    CAS  CrossRef  PubMed  Google Scholar 

  45. Kang WH, Chun SC, Lee S. Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroquinone and hydrocortisone): clinical and histological studies. J Dermatol. 1998;25(9):587–9.

    CAS  CrossRef  PubMed  Google Scholar 

  46. Chan R, Park KC, Lee MH, Lee ES, Chang SE, Leow YH, et al. A randomized controlled trial of the efficacy and safety of a fixed triple combination (fluocinolone acetonide 0.01%, hydroquinone 4%, tretinoin 0.05%) compared with hydroquinone 4% cream in Asian patients with moderate to severe melasma. Br J Dermatol. 2008;159(3):697–703.

    CAS  PubMed  Google Scholar 

  47. Na JI, Choi SY, Yang SH, Choi HR, Kang HY, Park KC. Effect of tranexamic acid on melasma: a clinical trial with histological evaluation. J Eur Acad Dermatol Venereol. 2013;27(8):1035–9.

    CAS  CrossRef  PubMed  Google Scholar 

  48. Kim SJ, Park JY, Shibata T, Fujiwara R, Kang HY. Efficacy and possible mechanisms of topical tranexamic acid in melasma. Clin Exp Dermatol. 2016;41(5):480–5.

    CAS  CrossRef  PubMed  Google Scholar 

  49. Tay EY, Gan EY, Tan VW, Lin Z, Liang Y, Lin F, et al. Pilot study of an automated method to determine Melasma area and severity index. Br J Dermatol. 2015;172(6):1535–40.

    CAS  CrossRef  PubMed  Google Scholar 

  50. Cameli N, Abril E, Agozzino M, Mariano M. Clinical and instrumental evaluation of the efficacy of a new depigmenting agent containing a combination of a retinoid, a phenolic agent and an antioxidant for the treatment of solar lentigines. Dermatology. 2015;230(4):360–6.

    CAS  CrossRef  PubMed  Google Scholar 

  51. Cho M, Lee DH, Kim Y, Koh W, Chung JH, Kim HC, et al. Development and clinical validation of a novel photography-based skin pigmentation evaluation system: a comparison with the calculated consensus of dermatologists. Int J Cosmet Sci. 2016;38(4):399–408.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Newcomer VD, Lindberg MC, Sternberg THA. Melanosis of the face (“chloasma”). Arch Dermatol. 1961;83:284–99.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Pathak MA, Riley FC, Fitzpatrick TB. Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. J Invest Dermatol. 1962;39:435–43.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Grimes PE. Melasma. Etiologic and therapeutic considerations. Arch Dermatol. 1995;131(12):1453–7.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Westerhof W, Kooyers TJ. Hydroquinone and its analogues in dermatology - a potential health risk. J Cosmet Dermatol. 2005;4(2):55–9.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Nordlund JJ, Grimes PE, Ortonne JP. The safety of hydroquinone. J Eur Acad Dermatol Venereol. 2006;20(7):781–7.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Kang HY, Valerio L, Bahadoran P, Ortonne JP. The role of topical retinoids in the treatment of pigmentary disorders: an evidence-based review. Am J Clin Dermatol. 2009;10(4):251–60.

    CrossRef  PubMed  Google Scholar 

  58. Ferreira Cestari T, Hassun K, Sittart A, de Lourdes Viegas MA. Comparison of triple combination cream and hydroquinone 4% cream for the treatment of moderate to severe facial melasma. J Cosmet Dermatol. 2007;6(1):36–9.

    CrossRef  PubMed  Google Scholar 

  59. Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res. 1998;11(4):206–12.

    CAS  CrossRef  PubMed  Google Scholar 

  60. Ertam I, Mutlu B, Unal I, Alper S, Kivcak B, Ozer O. Efficiency of ellagic acid and arbutin in melasma: a randomized, prospective, open-label study. J Dermatol. 2008;35(9):570–4.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Nazzaro-Porro M, Passi S. Identification of tyrosinase inhibitors in cultures of Pityrosporum. J Invest Dermatol. 1978;71(3):205–8.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Kim DS, Kim SY, Park SH, Choi YG, Kwon SB, Kim MK, et al. Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol Pharm Bull. 2005;28(12):2216–9.

    CAS  CrossRef  PubMed  Google Scholar 

  63. Huh SY, Shin JW, Na JI, Huh CH, Youn SW, Park KC. Efficacy and safety of liposome-encapsulated 4-n-butylresorcinol 0.1% cream for the treatment of melasma: a randomized controlled split-face trial. J Dermatol. 2010;37(4):311–5.

    CAS  CrossRef  PubMed  Google Scholar 

  64. Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J. 1993;295(Pt 1):309–12.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Huh CH, Seo KI, Park JY, Lim JG, Eun HC, Park KCA. Randomized, double-blind, placebo-controlled trial of vitamin C iontophoresis in melasma. Dermatology. 2003;206(4):316–20.

    CAS  CrossRef  PubMed  Google Scholar 

  66. Ichihashi M, Funasaka Y, Ohashi A, Chacraborty A, Ahmed NU, Ueda M, et al. The inhibitory effect of DL-alpha-tocopheryl ferulate in lecithin on melanogenesis. Anticancer Res. 1999;19(5A):3769–74.

    CAS  PubMed  Google Scholar 

  67. Yamamura T, Onishi J, Nishiyama T. Antimelanogenic activity of hydrocoumarins in cultured normal human melanocytes by stimulating intracellular glutathione synthesis. Arch Dermatol Res. 2002;294(8):349–54.

    CAS  CrossRef  PubMed  Google Scholar 

  68. Saliou C, Kitazawa M, McLaughlin L, Yang JP, Lodge JK, Tetsuka T, et al. Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. Free Radic Biol Med. 1999;26(1–2):174–83.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Kasraee B. Depigmentation of brown Guinea pig skin by topical application of methimazole. J Invest Dermatol. 2002;118(1):205–7.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Kasraee B. Peroxidase-mediated mechanisms are involved in the melanocytotoxic and melanogenesis-inhibiting effects of chemical agents. Dermatology. 2002;205(4):329–39.

    CAS  CrossRef  PubMed  Google Scholar 

  71. Robb EL, Page MM, Wiens BE, Stuart JA. Molecular mechanisms of oxidative stress resistance induced by resveratrol: specific and progressive induction of MnSOD. Biochem Biophys Res Commun. 2008;367(2):406–12.

    CAS  CrossRef  PubMed  Google Scholar 

  72. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol. 2000;115(2):162–7.

    CAS  CrossRef  PubMed  Google Scholar 

  73. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254(1):25–32.

    CAS  CrossRef  PubMed  Google Scholar 

  74. Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol. 2002;147(1):20–31.

    CAS  CrossRef  PubMed  Google Scholar 

  75. Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 1998;290(7):375–81.

    CAS  CrossRef  PubMed  Google Scholar 

  76. Mishima Y, Imokawa G. Selective aberration and pigment loss in melanosomes of malignant melanoma cells in vitro by glycosylation inhibitors: premelanosomes as glycoprotein. J Invest Dermatol. 1983;81(2):106–14.

    CAS  CrossRef  PubMed  Google Scholar 

  77. Franchi J, Coutadeur MC, Marteau C, Mersel M, Kupferberg A. Depigmenting effects of calcium D-pantetheine-S-sulfonate on human melanocytes. Pigment Cell Res. 2000;13(3):165–71.

    CAS  CrossRef  PubMed  Google Scholar 

  78. Li YH, Chen JZ, Wei HC, Wu Y, Liu M, Xu YY, et al. Efficacy and safety of intense pulsed light in treatment of melasma in Chinese patients. Dermatol Surg. 2008;34(5):693–700. discussion 700-1

    CAS  PubMed  Google Scholar 

  79. Negishi K, Kushikata N, Tezuka Y, Takeuchi K, Miyamoto E, Wakamatsu S. Study of the incidence and nature of “very subtle epidermal melasma” in relation to intense pulsed light treatment. Dermatol Surg. 2004;30(6):881–6. discussion 6

    PubMed  Google Scholar 

  80. Lee WR, Shen SC, Pai MH, Yang HH, Yuan CY, Fang JY. Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: a comparison with conventional erbium: Yag laser. J Control Release. 2010 Jul 14;145(2):124–33.

    CAS  CrossRef  PubMed  Google Scholar 

  81. Rokhsar CK, Fitzpatrick RE. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg. 2005;31(12):1645–50.

    CAS  PubMed  Google Scholar 

  82. Kroon MW, Wind BS, Beek JF, van der Veen JP, Nieuweboer-Krobotová L, Bos JD, et al. Nonablative 1550-nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled pilot study. J Am Acad Dermatol. 2011;64(3):516–23.

    CrossRef  PubMed  Google Scholar 

  83. Kim JH, Kim H, Park HC, Kim IH. Subcellular selective photothermolysis of melanosomes in adult zebrafish skin following 1064-nm Q-switched Nd:YAG laser irradiation. J Invest Dermatol. 2010;130(9):2333–5.

    CAS  CrossRef  PubMed  Google Scholar 

  84. Wattanakrai P, Mornchan R, Eimpunth S. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser for the treatment of facial melasma in Asians. Dermatol Surg. 2010;36(1):76–87. https://doi.org/10.1111/j.1524-4725.2009.01383.x.

    CrossRef  PubMed  Google Scholar 

  85. Passeron T, Fontas E, Kang HY, Bahadoran P, Lacour JP, Ortonne JP. Melasma treatment with pulsed-dye laser and triple combination cream: a prospective, randomized, single-blind, split-face study. Arch Dermatol. 2011;147(9):1106–8.

    CrossRef  PubMed  Google Scholar 

  86. Lee HI, Lim YY, Kim BJ, Kim MN, Min HJ, Hwang JH, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010;36(6):885–93.

    CAS  CrossRef  PubMed  Google Scholar 

  87. Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21(5):687–90.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  88. Bastaki M, Nelli EE, Dell’Era P, Rusnati M, Molinari-Tosatti MP, Parolini S, et al. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol. 1997;17(3):454–64.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Young Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Park, KC., Kang, H.Y. (2018). Current Views on Melasma. In: Kumarasinghe, P. (eds) Pigmentary Skin Disorders. Updates in Clinical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-70419-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70419-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70418-0

  • Online ISBN: 978-3-319-70419-7

  • eBook Packages: MedicineMedicine (R0)