AMR2FRED, A Tool for Translating Abstract Meaning Representation to Motif-Based Linguistic Knowledge Graphs

  • Antonello Meloni
  • Diego Reforgiato Recupero
  • Aldo Gangemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10577)

Abstract

In this paper we present AMR2FRED, a software application to translate Abstract Meaning Representation (AMR) to RDF using the knowledge patterns applied by the FRED machine reading method. AMR and FRED representations are both graph-based, and event-centric (neo-Davidsonian), but they differ in several logical, conceptual, and design assumptions. The former has become a de facto standard for the Natural Language Processing community, whereas FRED adds semantics to the extracted information using several ontologies and best practices from the Semantic Web. With the increasing availability of manually AMR-annotated datasets, this tool provides straightforward means to adapt annotated datasets for AMR according to the design patterns used by FRED, and to evaluate machine reading tools with gold-standard data. AMR2FRED takes as input an AMR representation of a text, and prints a FRED-like RDF output. The system is open source and can be freely downloaded from https://github.com/infovillasimius/amr2Fred.

Keywords

Abstract Meaning Representation RDF Machine reading 

References

  1. 1.
    Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, pp. 1699–1710 (2015)Google Scholar
  2. 2.
    Chen, W.-T.: Learning to map dependency parses to abstract meaning representations. In: Proceedings of the ACL-IJCNLP 2015 Student Research Workshop, Beijing, pp. 41–46 (2015)Google Scholar
  3. 3.
    Pust, M., Hermjakob, U., Knight, K., Marcu, D., May, J.: Parsing English into abstract meaning representation using syntax-based machine translation. In: Proceedings of the EMNLP 2015, Lisbon, pp. 1143–1154 (2015)Google Scholar
  4. 4.
    Peng, X., Song, L., Gildea, D.: A synchronous hyperedge replacement grammar based approach for AMR parsing. In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning, Beijing, pp. 32–41 (2015)Google Scholar
  5. 5.
    Sawai, Y., Shindo, H., Matsumoto, Y.: Semantic structure analysis of noun phrases using abstract meaning representation. In: Proceedings of the 53rd Annual Meeting of the ACL (Short Papers), Beijing, vol. 2, pp 851–856 (2015)Google Scholar
  6. 6.
    Werling, K., Angeli, G., Manning, C.D.: Robust subgraph generation improves abstract meaning representation parsing. In: Proceedings of the 53rd Annual Meeting of the ACL (Long Papers), Beijing, vol. 1, pp. 982–991 (2015)Google Scholar
  7. 7.
    Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings ACL Linguistic Annotation Workshop (LAW) (2013)Google Scholar
  8. 8.
    Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, J.A.G., Janssen, T.M.V., Stokhof, M.B.J. (eds.) Formal Methods in the Study of Language, Part I, pp. 277–322. Mathematisch Centrum (1981)Google Scholar
  9. 9.
    Gangemi, A., Presutti, V., Reforgiato Recupero, D., Nuzzolese, A.G., Draicchio, F., Mongioví, M.: Semantic web machine reading with FRED. Semant. Web J. (2016).  https://doi.org/10.3233/SW-160240
  10. 10.
    Peroni, S., Gangemi, A., Vitali, F.: Dealing with markup semantics. In: Proceedings of the 7th International Conference on Semantic Systems, Graz, Austria, pp. 111–118. ACM (2011)Google Scholar
  11. 11.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41338-4_7 CrossRefGoogle Scholar
  12. 12.
    Gangemi, A., Mongiovi, M., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Identifying motifs for evaluating open knowledge extraction on the web. Knowl.-Based Syst. 108, 33–41 (2016)CrossRefGoogle Scholar
  13. 13.
    Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38288-8_24 CrossRefGoogle Scholar
  14. 14.
    Gangemi, A., Nuzzolese, A.G., Presutti, V., Reforgiato, D.: Adjective semantics in open knowledge extraction. In: Formal Ontology in Information Systems Conference (FOIS 2106). IOS Press (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonello Meloni
    • 1
  • Diego Reforgiato Recupero
    • 1
  • Aldo Gangemi
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of CagliariCagliariItaly
  2. 2.Université Paris 13VilletaneuseFrance

Personalised recommendations