Advertisement

A Linked Data Profiling Service for Quality Assessment

  • Nandana Mihindukulasooriya
  • Raúl García-Castro
  • Freddy Priyatna
  • Edna Ruckhaus
  • Nelson Saturno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10577)

Abstract

The Linked (Open) Data cloud has been growing at a rapid rate in recent years. However, the large variance of quality in its datasets is a key obstacle that hinders their use, so quality assessment has become an important aspect. Data profiling is one of the widely used techniques for data quality assessment in domains such as relational data; nevertheless, it is not so widely used in Linked Data. We argue that one reason for this is the lack of Linked Data profiling tools that are configurable in a declarative manner, and that produce comprehensive profiling information with the level of detail required by quality assessment techniques. To this end, this demo paper presents the Loupe API, a RESTful web service that profiles Linked Data based on user requirements and produces comprehensive profiling information on explicit RDF general data, class, property and vocabulary usage, and implicit data patterns such as cardinalities, instance ratios, value distributions, and multilingualism. Profiling results can be used to assess quality either by manual inspection, or automatically using data validation languages such as SHACL, ShEX, or SPIN.

Keywords

Linked Data Quality Data profiling Services 

References

  1. 1.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)CrossRefGoogle Scholar
  2. 2.
    Defeo, J.A., Juran, J.M.: Juran’s Quality Handbook: The Complete Guide to Performance Excellence, 6th edn. McGraw-Hill Education (2010)Google Scholar
  3. 3.
    Olson, J.E.: Data Quality: The Accuracy Dimension, 1st edn. Morgan Kaufmann, USA (2003)Google Scholar
  4. 4.
    Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  5. 5.
    Mihindukulasooriya, N., Rico, M., García-Castro, R., Gómez-Pérez, A.: An analysis of the quality issues of the properties available in the Spanish DBpedia. In: Puerta, J.M., Gámez, J.A., Dorronsoro, B., Barrenechea, E., Troncoso, A., Baruque, B., Galar, M. (eds.) CAEPIA 2015. LNCS (LNAI), vol. 9422, pp. 198–209. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24598-0_18CrossRefGoogle Scholar
  6. 6.
    Mihindukulasooriya, N., Rizzo, G., Troncy, R., Corcho, O., Garcıa-Castro, R.: A two-fold quality assurance approach for dynamic knowledge bases: the 3cixty use case. In: Proceedings of the 1st International Workshop on Completing and Debugging the Semantic Web, pp. 1–12 (2016)Google Scholar
  7. 7.
    Böhm, C., Naumann, F., Abedjan, Z., Fenz, D., Grütze, T., Hefenbrock, D., Pohl, M., Sonnabend, D.: Profiling linked open data with ProLOD. In: Haas, L. (ed.) Proceedings of the 2nd International Workshop on New Trends in Information Integration, pp. 175–178. IEEE (2010)Google Scholar
  8. 8.
    Mäkelä, E.: Aether – generating and viewing extended VoID statistical descriptions of RDF datasets. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 429–433. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11955-7_61CrossRefGoogle Scholar
  9. 9.
    Khatchadourian, S., Consens, M.P.: ExpLOD: summary-based exploration of interlinking and RDF usage in the linked open data cloud. In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 272–287. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13489-0_19CrossRefGoogle Scholar
  10. 10.
    Spahiu, B., Porrini, R., Palmonari, M., Rula, A., Maurino, A.: ABSTAT: ontology-driven linked data summaries with pattern minimalization. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 381–395. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5_51CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ontology Engineering GroupUniversidad Politécnica de MadridMadridSpain
  2. 2.Universidad Simón BolívarCaracasVenezuela

Personalised recommendations