Towards the Temporal Streaming of Graph Data on Distributed Ledgers

  • Allan Third
  • Ilaria Tiddi
  • Emanuele Bastianelli
  • Chris Valentine
  • John Domingue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10577)


We present our work-in-progress on handling temporal RDF graph data using the Ethereum distributed ledger. The motivation for this work are scenarios where multiple distributed consumers of streamed data may need or wish to verify that data has not been tampered with since it was generated – for example, if the data describes something which can be or has been sold, such as domestically-generated electricity. We describe a system in which temporal annotations, and information suitable to validate a given dataset, are stored on a distributed ledger, alongside the results of fixed SPARQL queries executed at the time of data storage. The model adopted implements a graph-based form of temporal RDF, in which time intervals are represented by named graphs corresponding to ledger entries. We conclude by discussing evaluation, what remains to be implemented, and future directions.


  1. 1.
    Abele, A., McCrae, J.P., Buitelaar, P., Jentzsch, A., Cyganiak, R.: Linking open data cloud diagram 2017 (2017).
  2. 2.
    The Adventurists. Mongol Rally (2017).
  3. 3.
    Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time of triples in linked geospatial data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 259–274. Springer, Heidelberg (2013). Scholar
  4. 4.
    EthereumWiki. Ethereum light client protocol (2017).
  5. 5.
    Greenspan, G.: Avoiding the pointless blockchain project, November 2015.
  6. 6.
    Kietz, J.U., Scharrenbach, T., Fischer, L., Bernstein, A., Nguyen, K.: TEF-SPARQL: The DDIS query-language for time annotated event and fact triple-streams. Technical report, University of Zurich, Department of Informatics (2013)Google Scholar
  7. 7.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). Scholar
  8. 8.
    OpenEnergyMonitor. OpenEnergyMonitor (2017).
  9. 9.
    The Raspberry Pi Foundation. Raspberry pi (2017).
  10. 10.
    Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009). Scholar
  11. 11.
    Valentine, C.: GreenDATA (2016).
  12. 12.
    Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de Walle, R.: Web-scale querying through Linked Data Fragments. In: LDOW (2014)Google Scholar
  13. 13.
  14. 14.
    W3C. Resource Description Framework (2014).
  15. 15.
    W3C. RDF stream models (2017).
  16. 16.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Allan Third
    • 1
  • Ilaria Tiddi
    • 1
  • Emanuele Bastianelli
    • 1
  • Chris Valentine
    • 1
  • John Domingue
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK

Personalised recommendations