Advertisement

Detection and Tracking of the Pores of the Lamina Cribrosa in Three Dimensional SD-OCT Data

  • Florence Rossant
  • Kate Grieve
  • Stéphanie Zwillinger
  • Michel Paques
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10617)

Abstract

Glaucoma is one of the leading causes of blindness in the world. Although its physiopathology remains unclear, the deformations of the lamina cribrosa (LC), a three-dimensional porous structure through which all the nerve fibers from the retina pass to join the brain, are very likely to play a major role. We present in this article a method for the 3D reconstruction of the pores of the LC, i.e. of the axon pathways, from three dimensional SD-OCT data. This method is based on pore detection in one en-face plane and on pore tracking throughout the volume. To overcome difficulties due to the low signal to noise ratio, we model and integrate a priori knowledge regarding the structures to be segmented in all steps of our algorithm. The quantitative evaluation shows good results on a test set of 14 images, with 76% of the axonal paths truly detected and an RMSE between the automatic and the manual segmentations around 2 pixels.

Keywords

Optical coherence tomography 3D OCT SD-OCT Retina Optic nerve Lamina cribrosa Tracking Pore segmentation 

References

  1. 1.
    Zwillinger, S., Paques, M., Safran, B., Baudouin, C.: In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma. J. Fr. Ophtalmol. 39(3), 265–271 (2016)CrossRefGoogle Scholar
  2. 2.
    Burgoyne, C.: The morphological difference between glaucoma and other optic neuropathies. J. Neuroophthalmol. 35(0 1), S8–S21 (2015)CrossRefGoogle Scholar
  3. 3.
    Tan, M.H., Ong, S.H., Thakku, S.G., et al.: Automatic feature extraction of optical coherence tomography for lamina cribrosa detection. J Image Graph. 3(2), 102–106 (2015)Google Scholar
  4. 4.
    Omodaka, K., Horii, T., Takahashi, S., Kikawa, T., et al.: 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One 10(4), e0122347 (2015)CrossRefGoogle Scholar
  5. 5.
    Belghith, A., Bowd, C., Medeiros, F.A., Weinreb, R.N., Zangwill, L.M.: Automated segmentation of anterior lamina cribrosa surface: how the lamina cribrosa responds to intraocular pressure change in glaucoma eyes? In: IEEE ISBI Conference, New York, NY, pp. 222–225 (2015)Google Scholar
  6. 6.
    Nadler, Z., Wang, B., Wollstein, G., et al.: Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed. Opt. Expr. 4(11), 2596–2608 (2013)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Upper Saddle River (2006). Chap. 9Google Scholar
  8. 8.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Florence Rossant
    • 1
  • Kate Grieve
    • 2
  • Stéphanie Zwillinger
    • 2
  • Michel Paques
    • 2
  1. 1.Institut Supérieur d’Electronique de Paris (ISEP)ParisFrance
  2. 2.Clinical Investigation Center 1423Quinze-Vingts HospitalParisFrance

Personalised recommendations