Skip to main content

Nanotechnological Interventions for Drug Delivery in Eye Diseases

  • Chapter
  • First Online:
Nanotechnology Applied To Pharmaceutical Technology

Abstract

Ocular diseases including various anterior and posterior segment diseases are considered as the major cause of blindness all over the world. However, efficient delivery of ocular drugs is always a great challenge to researchers and ophthalmologists due to the complex structure and physiology of the eye. The conventional treatment strategies comprising eye drops, injections, and implants may be insufficient in some cases and have severe side effects and/or low bioavailability. In this context, nanotechnology as novel and emerging technology can play important role in development of potential and highly specific strategies for ocular disease treatments. Different nanomaterials-based drug delivery will be useful in overcoming the ocular barriers and control release of drugs. In this chapter, we have discussed various anterior and posterior segment diseases of eye and also focused on the recent advancement in nanomaterial-based systems for efficient drug delivery in various ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelbary G, El-gendy N (2008) Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTec 9(3):740–747

    Article  CAS  Google Scholar 

  • Abdelkader H, Alani AWG, Alany RG (2014) Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv 21(2):87–100

    Article  CAS  PubMed  Google Scholar 

  • Amin KM (2017) Nano-ophthalmology: applications and considerations. Nanomed Nanotechnol Biol Med doi:10.1016/j.nano.2017.02.007

  • Amsalu A, Abebe T, Mihre A, Delelegn D, Tadess E (2015) Potential bacterial pathogens of external ocular infections and their antibiotic susceptibility pattern at Hawassa University teaching and referral Hospital, Southern Ethiopia. Afr J Microbiol Res 9(14):1012–1019

    Article  Google Scholar 

  • Araujo J, Nikolic S, Egea MA, Souto EB, Garcia ML (2011) Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces 88:150–157

    Article  CAS  PubMed  Google Scholar 

  • Attama AA, Reichl S, Müller-Goymann CC (2008) Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int J Pharm 355:307–313

    Article  CAS  PubMed  Google Scholar 

  • Azari A, Barney P (2013) Conjunctivitis: a systematic review of diagnosis and treatment. JAMA 310(16):1721–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahuva A, Rao SK (2014) Current concepts in management of pterygium. Delhi J Ophthalmol 25(2):78–84

    Article  Google Scholar 

  • Baranowski P, Karolewicz B, Gajda M and Pluta J (2014) Ophthalmic drug dosage forms: characterisation and research methods. Sci World J 2014: Article ID 861904. doi:10.1155/2014/861904

  • Barbu E, Verestiuc L, Iancu M, Jatariu A, Lungu A, Tsibouklis J (2009) Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid functionalized chitosan and N—isopropyl acrylamide or 2-hydroxyethyl methacrylate. Nanotechnology 20(22):225108

    Article  PubMed  CAS  Google Scholar 

  • Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo Rodriguez A, Solinis MA (2016) Application of lipid nanoparticles to ocular drug delivery. Expert Opin Drug Deliv 13(12):1743–1757

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz SF, Khameneh B, Jalili-Behabadi M, Malaekeh-Nikoueid B, Mohajeric SA (2014) Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Contact Lens Anterior Eye 37:149–152

    Article  Google Scholar 

  • Bhatti MN, Zaman Y, Rahman A, Mahar PS, Kamal, MF, ul-Hassan M, Rai P (2010) Regression of corneal vascularization by laser treatment. Pakistan J Ophthalmol 26(1):23–27

    Google Scholar 

  • Bochot A, Fattal E (2012) Liposomes for intravitreal drug delivery: a state of the art. J Control Release 161:628–634

    Article  CAS  PubMed  Google Scholar 

  • Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, Couvreur P (2002) Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Visual Sci 43(1):253–259

    Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975–999

    Article  CAS  Google Scholar 

  • Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD (2017) Oxidative stress and diabetic retinopathy: development and treatment. Eye. doi:10.1038/eye.2017.64

    PubMed  Google Scholar 

  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238:241–245

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT (2012) Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 57(5):415–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiang HH, Hemmati HD (2013) Treatment of corneal neovascularization. EyeNet, Ophthalmic Pearl, Cornea 35–41 (available at: https://www.aao.org/eyenet?october-2013)

  • Cholkar K, Patel A, Vadlapudi AD, Mitra AK (2012) Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2(2):82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu HY, Hsiao CH, Chen PYF, Ma DHK, Chang CJ, Tan HY (2017) Corneal backscatters as an objective index for assessing Fuchs’ endothelial corneal dystrophy: a pilot study. J Ophthalmol. Article ID 8747013. doi:10.1155/2017/8747013

  • Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG (2009) Polyhydroxy ethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378(1–2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Corcóstegui B, Durán S, González-Albarrán MO, Hernández C, Ruiz-Moreno JM, Salvador J, Udaondo P, Simó R (2017) Update on diagnosis and treatment of diabetic retinopathy: a consensus guideline of the working group of ocular health (Spanish Society of Diabetes and Spanish Vitreous and Retina Society). J Ophthalmol. Article ID 8234186. doi:10.1155/2017/8234186

  • de Barros Garcia JMB, Isaac DLC, Avila M (2017) Diabetic retinopathy and OCT angiography: clinical findings and future perspectives. Int J Retina Vitreous 3:14. doi:10.1186/s40942-017-0062-2

  • del Pozo-Rodríguez A, Delgado D, Gascón AR, Solinís MÁ (2013) Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocular Pharmacol Ther 29:173–188

    Article  CAS  Google Scholar 

  • Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Moller M (2011) Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416:515–524

    Article  PubMed  CAS  Google Scholar 

  • Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability and delivery of gatifloxacin. Invest Ophthalmol Visual Sci 51(11):5804–5816

    Article  Google Scholar 

  • Eghrari AO, Gottsch JD (2010) Fuchs’ corneal dystrophy. Expert Rev Ophthalmol 5(2):147–159

    Article  PubMed  PubMed Central  Google Scholar 

  • ElShaer A, Mustafa S, Kasar M, Thapa S, Ghatora B, Alany RG (2016) Nanoparticle-laden contact lens for controlled ocular delivery of prednisolone: formulation optimization using statistical experimental design. Pharmaceutics 8(2):14

    Article  PubMed Central  Google Scholar 

  • Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, Lacava B, Miranda-Vilela AL, Tedesco AC, Báo S, Morais PC, Lacava ZG (2011) Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system. Int J Nanomed 6:1709–1717

    Article  CAS  Google Scholar 

  • Faber K, Zorzi GK, Brazil NT, Rott MB, Teixeira HF (2017) siRNA-loaded liposomes: inhibition of encystment of Acanthamoeba and toxicity on the eye surface. doi:10.1111/cbdd.12958

  • Fathalla ZM, Khaled KA, Hussein AK, Alany RG, Vangala A (2016) Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 42(4):514–524

    Article  CAS  PubMed  Google Scholar 

  • Fathi M, Barar J, Aghanejad A, Omidi Y (2015) Hydrogels for ocular drug delivery and tissue engineering. BioImpacts: BI 5(4):159–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster A, Resnikoff S (2005) The impact of Vision 2020 on global blindness. Eye (Lond) 19(10):1133–1135

    Article  CAS  Google Scholar 

  • Gaafar M, Abdallah OY, Farid RM, Abdelkader H (2014) Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res 24:204–215

    Article  CAS  PubMed  Google Scholar 

  • Gratieri T, Gelfuso GM, Lopez RFV, Souto EB (2010) Current efforts and the potential of nanomedicine in treating fungal keratitis. Rev Ophthalmol 5(3):365–384

    Article  CAS  Google Scholar 

  • Gross N, Ranjbar M, Evers C, Hua J, Martin G, Schulze B, Michaelis U, Hansen LL, Agostini HT (2013) Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol Vision 19:54–61

    CAS  Google Scholar 

  • Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Madan S, Majumdar DK, Maitra A (2000) Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm 209(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 6(2):324–333

    Article  CAS  PubMed  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 19(6):409–417

    Article  CAS  PubMed  Google Scholar 

  • Habib FS,  Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in vitro studies. Acta Ophthalmol 88(8):901–904

    Google Scholar 

  • Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X (2011) Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomed 6:683–692

    CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. The Lancet 368(9549):1795–1809

    Article  CAS  Google Scholar 

  • Hemavathi PS, Shenoy P (2014) Profile of microbial isolates in ophthalmic infections and antibiotic susceptibility of the bacterial isolates: a study in an eye care hospital, Bangalore. J Clin Diagn Res 8(1):23–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomed 8:495–504

    Article  CAS  Google Scholar 

  • Horton S, Guly C (2017) Prevention and treatment of age related macular degeneration. Prescriber 28(1):37–41

    Article  Google Scholar 

  • Hung LH, Teh SY, Jester J, Lee AP (2010) PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 10(14):1820–1825

    Article  CAS  PubMed  Google Scholar 

  • Ideta R, Yanagi Y, Tamaki Y, Tasaka F, Harada A, Kataoka K (2004) Effective accumulation of polyion complex micelle to experimental choroidal neovascularization in rats. FEBS Lett 557(1–3):21–25

    Article  CAS  PubMed  Google Scholar 

  • Idu FK, Odjimogho SE (2003) Susceptibility of conjunctival bacterial pathogens to fluoroquinolones: a comparative study of ciprofloxacin, norfloxacin and ofloxacin. Online J Health Allied Sci 2(3):1–5

    Google Scholar 

  • Iriyama A, Oba M, Ishii T, Nishiyama N, Kataoka K, Tamaki Y, Yanagi Y (2011) Gene transfer using micellar nanovectors inhibits choroidal neovascularization in vivo. PLoS ONE 6(12):e28560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RL, Shastri JP (2011)  Study of ocular drug delivery system using drug-loaded liposomes. Int J Pharm Investig 1(1):35–41, doi:10.4103/2230-973X.767271

  • Janagam DR, Wu L, Lowe TL (2017) Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. doi:10.1016/j.addr.2017.04.001

    PubMed  Google Scholar 

  • Kaliamurthy J, Kalavathy CM, Parmar P, Jesudasan CAN, Thomas PA (2013) Spectrum of bacterial keratitis at a tertiary eye care centre in India. Biomed Res Int. Article ID 181564. doi:10.1155/2013/181564

  • Kanellopoulos AJ, Asimellis G (2016) In pursuit of objective dry eye screening clinical techniques. Eye Vision 3:1. doi:10.1186/s40662-015-0032-4

  • Kang SJ, Durairaj C, Kompella UB, O’Brien JM, Grossniklaus HE (2009) Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol 127(8):1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248(10):1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH (2011) The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 32(7):1865–1871

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Moon H, Han H, Na JH, Huh MS, Park JH, Kwon IC, Kim K, Kim H (2012) The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 33(12):3485–3493

    Article  CAS  PubMed  Google Scholar 

  • Lachmapure M, Paralikar P, Palanisamy M, Alves M, Rai M (2017) Efficacy of biogenic silver nanoparticles against clinical isolates of fungi causing mycotic keratitis in humans. IET Nanobiotechnol. doi:10.1049/iet-nbt.2017.0003

    Google Scholar 

  • Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, Kalia K, Tekade RK (2017) Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release. doi:10.1016/j.jconrel.2017.07

    PubMed  Google Scholar 

  • Lancina MG III, Singh S, Kompella UB, Husain S, Yang H (2017) Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS Biomater Sci Eng. doi:10.1021/acsbiomaterials.7b00319

    PubMed  Google Scholar 

  • Levinson JD, Joseph E, Ward LA, Nocera JR, Pardue MT, Bruce BB, Yan J (2017) Physical activity and quality of life in retinitis pigmentosa. J Ophthalmol. Article ID 6950642. doi:10.1155/2017/6950642

  • Liang K, Jiang Z, Ding B, Cheng P, Huang D, Tao L (2011) Expression of cell proliferation and apoptosis biomarkers in pterygia and normal conjunctiva. Mol Vision 17:1687–1693

    CAS  Google Scholar 

  • Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12:608–620

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wu J, Geng J, Yuan Z, Huang D (2013) Geographical prevalence and risk factors for pterygium: a systematic review and meta-analysis. BMJ Open 3(11):e003787

    Article  PubMed  PubMed Central  Google Scholar 

  • Long C, Liu B, Xu C, Jing Y, Yuan Z and Lin X (2014) Causative organisms of posttraumatic Endophthalmitis: a 20-year retrospective study. BMC Ophthalmol 14:34. doi:10.1186/1471-2415-14-34

  • Lu Y, GuoXing L, Shu Z, Fei S, XiaoJie H, Qian Z, Dai LM, Lu F, Liu Y (2013) Cytotoxicity and genotoxicity of multi-walled carbon nanotubes with human ocular cells. Mater Chem 58:2347–2353

    Google Scholar 

  • Lutfi G, Müzeyyen D (2013) Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm Dev Technol 18:701–709

    Article  PubMed  CAS  Google Scholar 

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA (2017) Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm S0378–5173(17):30673–30677

    Google Scholar 

  • Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interface Sci 183:46–54

    Article  PubMed  CAS  Google Scholar 

  • Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S (2016) Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 10(7):836–860

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Jain NK (2014) Acatazolamide encapsulated dendritic nanoarchitectures for effective glaucoma management in rabbits. Int J Pharm 461:380–390

    Article  CAS  PubMed  Google Scholar 

  • Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. Article ID 863734. doi:10.1155/2011/863734

  • Muduli SK, Wang S, Chen S, Ng CF, Huan CH, Sum TC, Soo HS (2014) Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes. Beilstein J Nanotechnol 5:517–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13

    Article  CAS  PubMed  Google Scholar 

  • Ning Z, Lei L, Junjie X (2017) Cytomegalovirus retinitis in a patient with secondary acute lymphosarcoma leukemia undergoing allogeneic hematopoietic stem-cell transplantation: a rare case report: a care-compliant article. Medicine 96:19. doi:10.1097/MD.0000000000006878

  • Ołdak M, Ruszkowska E, Udziela M, Oziębło D, Bińczyk E, Ścieżyńska A, Płoski R, Szaflik JP (2015) Fuchs endothelial corneal dystrophy: strong association with rs613872 not paralleled by changes in corneal endothelial TCF4 mRNA level. BioMed Res Int. Article ID 640234. doi:10.1155/2015/640234

  • Pascolini D, Mariotti SP (2012) Global estimates of visual impairment. Br J Ophthalmol 96(5):614–618

    Article  PubMed  Google Scholar 

  • Pastor JC (2011) A brief review and re-thinking of proliferative vitreoretinopathy. Eur Ophthalmic Rev 5(2):139–140

    Article  Google Scholar 

  • Patel S, Garapati C, Chowdhury P, Gupta H, Nesamony J, Nauli S, Boddu SHS (2015) Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J Ocular Pharmacol Ther. The Official J Assoc Ocular Pharmacol Ther 31(4):215–227

    Article  CAS  Google Scholar 

  • Pato E, Muñoz-Fernández S, Francisco F, Abad MA, Maese J, Ortiz A, Carmona L (2011) Systematic review on the effectiveness of immunosuppressants and biological therapies in the treatment of autoimmune posterior uveitis. Semin Arthritis Rheum 40(4):314–323

    Article  CAS  PubMed  Google Scholar 

  • Peng LH, Xu SY, Shan YH, Wei W, Liu S, Zhang CZ, Wu JH, Liang WQ, Gao JQ (2014) Sequential release of salidroside and paeonol from a nanosphere-hydrogel system inhibits ultraviolet B-induced melanogenesis in guinea pig skin. Int J Nanomed 9:1897–1908

    Article  Google Scholar 

  • Pepic I, Hafner A, Lovric J, Pirkic B, Filipovic-Grcic J (2010) A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci 99:4317–4325

    Article  CAS  PubMed  Google Scholar 

  • Pescina S, Sonvico F, Santi P, Nicoli S (2015) Therapeutics and carriers: the dual role of proteins in nanoparticles for ocular delivery. Curr Topics Med Chem 15(4):369–385

    Article  CAS  Google Scholar 

  • Prabu P, Chaudhari AA, Aryal S, Dharmaraj N, Park SY, Kim WD, Kim HY (2008) In vitro evaluation of poly(caprolactone) grafted dextran (PGD) nanoparticles with cancer cell. J Mater Sci Mater Med 19(5):2157–2163

    Article  CAS  PubMed  Google Scholar 

  • Prow TW (2010) Toxicity of nanomaterials to the eye. Wiley Interdisc Rev Nanomed Nanobiotechnol 2:317–333

    Article  CAS  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. doi:10.1136/bjo.2005.081224

  • Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M, Davaran S (2010) Curr Eye Res 35:1081

    Article  CAS  PubMed  Google Scholar 

  • Rahimi F, Hashemian MN, Khosravi A, Moradi G, Bamdad S (2015) Bacterial keratitis in a tertiary eye centre in Iran: a retrospective study. Middle East Afr J Ophthalmol 22(2):238–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai M, Ingle AP, Gaikwad S, Padovani FH, Alves M (2016) The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Crit Rev Biotechnol 36(5):777–787

    Article  CAS  PubMed  Google Scholar 

  • Raju HB, Hu Y, Vedula A, Dubovy SR and Goldberg JL (2011) Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS ONE 6(5): e17452. doi:10.1371/journal.pone.0017452

  • Ratnapriya R, Chew EY (2013) Age-related macular degeneration: clinical review and genetics update. Clin Genet 84(2):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayapudi S, Schwartz SG, Wang X and Chavis P (2013) Vitamin A and fish oils for retinitis pigmentosa. Cochrane Database Syst Rev 12: CD008428. doi:10.1002/14651858.CD008428.pub2

  • Romero FJ, Nicolaissen B, Peris-Martinez C (2014) New trends in anterior segment diseases of the eye. J Ophthalmol. Article ID 393040. doi:10.1155/2014/393040

  • Sadaka A, Giuliari GP (2012) Proliferative vitreoretinopathy: current and emerging treatments. Clin Ophthalmol 6:1325–1333

    PubMed  PubMed Central  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-López E, Espina M, Doktorovova S, Souto EB, García ML (2017) Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye—Part II—Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 110:58–69

    Article  PubMed  CAS  Google Scholar 

  • Santhi K, Muralidharan S, Yee YH, Min FY, Ting CZ, Devi D (2017) In-vitro characterization of chitosan nanoparticles of fluconazole as a carrier for sustained ocular delivery. Nanosci Nanotechnol-Asia 7(1):41–50

    CAS  Google Scholar 

  • Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H (2013) Retinal drug delivery using eyedrop preparations of poly- L -lysine-modified liposomes. Eur J Pharm Biopharm 83(3):364–369

    Article  CAS  PubMed  Google Scholar 

  • Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C (2014) Nanotechnology-based approaches for ophthalmology applications: therapeutic and diagnostic strategies. Asia-Pacific J Ophthalmol 3(3):172–180

    Article  CAS  Google Scholar 

  • Shukla PK, Kumar M, Keshava GB (2008) Mycotic keratitis: an overview of diagnosis and therapy. Mycoses 51(3):183–199

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Kumar C, Titiyal JS (2009) Etiopathogenesis of cataract: Journal review. Indian J Ophthalmol 57:245–249

    Article  PubMed Central  Google Scholar 

  • Soiberman U, Kambhampati SP, Wu T, Mishra MK, Oh Y, Sharma R, Wang J, Al Towerki AE, Yiu S, Stark WJ, Kannan RM (2017) Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 125:38–53

    Article  CAS  PubMed  Google Scholar 

  • Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, Vander-Beek BL, Wykoff CC, Gardner TW (2017) Diabetic retinopathy: a position statement by the American diabetes association. Diab Care 40(3):412–418

    Article  Google Scholar 

  • Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, López-García A, Herrero-Vanrell R, Molina-Martínez IT, Diebold Y (2017) Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: In vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res 154:79–87

    Article  PubMed  CAS  Google Scholar 

  • Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, Majoral JP, Caminade AM (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45(1):326–334

    Article  CAS  PubMed  Google Scholar 

  • Stewart MW (2010) Optimal management of cytomegalovirus retinitis in patients with AIDS. Clin Ophthalmol 4:285–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Subhi Y, Sørensen TL (2017) Neovascular age-related macular degeneration in the very old (≥90 Years): epidemiology, adherence to treatment, and comparison of efficacy. J Ophthalmol. Article ID 7194927. doi:10.1155/2017/7194927

  • Summaiya M, Neeta K, Sangita R (2012) Ocular infections: rational approach to antibiotic therapy. National J Med Res 2(1):22–24

    Google Scholar 

  • Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA (2014) Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22(3): 231–239

    Google Scholar 

  • Takashima Y, Tsuchiya T, Igarashi Y, Kanazawa T, Okada H, Urtti A (2012) Non-invasive ophthalmic liposomes for nucleic acid delivery to posterior segment of eye. Yakugaku Zasshi 132:1365–1370

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Slowing II, Huang Y, Trewyn BG, Hu J, Liu H, Lin VS (2011) Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine. J Colloid Interface Sci 360(2):488–496

    Article  CAS  PubMed  Google Scholar 

  • Teweldemedhin M, Saravanan M, Gebreyesus A, Gebreegziabiher D (2017) Ocular bacterial infections at Quiha Ophthalmic Hospital, Northern Ethiopia: an evaluation according to the risk factors and the antimicrobial susceptibility of bacterial isolates. BMC Infect Dis 17:207. doi:10.1186/s12879-017-2304-1

  • Thomas PA (2003) Current perspectives on ophthalmic mycoses. Clin Microbiol Rev 16(4):730–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorovic D, Vulovic TS, Sreckovic S, Jovanovic S, Janicijevic K, Todorovic Z (2016) Updates on the treatment of pterygium. Serbian J Exp Clin Res 17(3):257–261

    Article  CAS  Google Scholar 

  • Twelker JD, Bailey IL, Mannis MJ, Satariano WA (2000) Evaluating pterygium severity: a survey of corneal specialists. Cornea 19:292–296

    Article  CAS  PubMed  Google Scholar 

  • Vadlapudi AD, Mitra AK (2013) Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv 4(1):1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaishya RD, Khurana V, Patel S, Mitra AK (2014) Controlled ocular drug delivery with nanomicelles. Wiley Interdisc Rev Nanomed Nanobiotechnol 6(5):422–437

    Article  CAS  Google Scholar 

  • Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Velagaleti PR, Anglade E, Khan IJ, Gilger BC, Mitra AK (2010) Topical delivery of hydrophobic drugs using a novel mixed nanomicellar technology to treat diseases of the anterior and posterior segments of the eye. Drug Deliv Technol 10(4):42–47

    CAS  Google Scholar 

  • Volotinen M, Maenpaa J, Kautiainen H, Tolonen A, Uusitalo J, Ropo A, Vapaatalo H, Aine E (2009) Ophthalmic timolol in a hydrogel vehicle leads to minor inter-individual variation in timolol concentration in aqueous humor. Eur J Pharm Sci 36(2–3):292–296

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15:2724–2750

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen R, Ren ZF, Ge CW, Liu ZX, He SJ, Yu YQ, Wu CY, Luo LB (2016) Plasmonic silver nanosphere enhanced ZnSe nanoribbon/Si heterojunction optoelectronic devices. Nanotechnology 27(21):215202

    Article  PubMed  CAS  Google Scholar 

  • Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901–1911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z (2017) Nanotechnology-based strategies for treatment of ocular disease. Acta Pharmaceutica Sinica B 7(3):281–291

    Article  PubMed  Google Scholar 

  • WHO (World Health Organization) (2010) Blindness: Vision 2020—The global initiative for the elimination of avoidable blindness

    Google Scholar 

  • WHO (World Health Organization) (2015) Visual impairment and blindness

    Google Scholar 

  • Wu JY, Xia Q (2011) Preparation and characterization of Azithromycin-loaded nanostructured lipid carriers. Adv Mater Res 236–238:2917–2920

    Article  CAS  Google Scholar 

  • Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocular Pharmacol Ther 29(2):270–274

    Article  CAS  Google Scholar 

  • Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB (2012) Hybrid dendrimer hydrogel/plga nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 6(9):7595–7606

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H (2006) Biocompatibility of nanofilm-encapsulated silicone and silicone-hydrogel contact lenses. Macromol Biosci 6:121–138

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Gong C, Shi S, Liu X, Wei Y, Qian Z (2010) Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-PEG hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res Part B Appl Biomater 92:129–137

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa Y, Miller JW, Kim IK (2015) Age-related macular degeneration: advances in management and diagnosis. J Clin Med 4(2):343–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu S, Li Q, Li Y, Wang H, Liu D, Yang X, Pan W (2017) A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: enhanced trans-corneal permeability and bioavailability of nepafenac. New J Chem 41:3920–3929

    Article  CAS  Google Scholar 

  • Yue BYJT (2011) Characteristics and functional consequences. Taiwan J Ophthalmol 1(1):6–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 150:144–162

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guan P, Wang T, Chang D, Jiang T, Wang S (2009a) Freeze-dried liposomes as potential carriers for ocular administration of cytochrome c against selenite cataract formation. J Pharm Pharmacol 61(9):1171–1178

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li Y, Zhang C, Wang Y, Song C (2009b) Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomed 4:175–183

    Article  CAS  Google Scholar 

  • Zhang P, Liu X, Hu W, Bai Y, Zhang L (2016) Preparation and evaluation of naringenin-loaded sulfobutylether-beta-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym 149:224–230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingle, A.P. et al. (2017). Nanotechnological Interventions for Drug Delivery in Eye Diseases. In: Rai, M., Alves dos Santos, C. (eds) Nanotechnology Applied To Pharmaceutical Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70299-5_12

Download citation

Publish with us

Policies and ethics