Skip to main content

Computational Methods in Subspace Designs

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Subspace designs are the q-analogs of combinatorial designs. Introduced in the 1970s, these structures gained a lot of interest recently because of their application to random network coding. Compared to combinatorial designs, the number of blocks of subspace designs are huge even for the smallest instances. Thus, for a computational approach, sophisticated algorithms are indispensible. This chapter highlights computational methods for the construction of subspace designs, in particular methods based on group theory. Starting from tactical decompositions we present the method of Kramer and Mesner which allows to restrict the search for subspace designs to those with a prescribed group of automorphisms. This approach reduces the construction problem to the problem of solving a Diophantine linear system of equations. With slight modifications it can also be used to construct large sets of subspace designs. After a successful search, it is natural to ask if subspace designs are isomorphic. We give several helpful tools which allow to give answers in surprisingly many situations, sometimes in a purely theoretical way. Finally, we will give an overview of algorithms which are suitable to solve the underlying Diophantine linear system of equations. As a companion to chapter “q-Analogs of Designs: Subspace Designs” this chapter provides an extensive list of groups which were used to construct subspace designs and large sets of subspace designs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://subspacecodes.uni-bayreuth.de.

References

  1. W.O. Alltop, On the construction of block designs. J. Comb. Theory 1, 501–502 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Berge, D. Ray-Chaudhuri, in Unsolved problems, ed. by C. Berge, D. Ray-Chaudhuri. Hypergraph Seminar: Ohio State University 1972, in Lecture Notes in Mathematics, vol. 411 (Springer, Berlin, 1974), pp. 278–287. https://doi.org/10.1007/BFb0066199

  3. T. Beth, D. Jungnickel, H. Lenz, Design Theory, vol. 1, 2, 2nd edn. (Cambridge University Press, London, 1999)

    Book  MATH  Google Scholar 

  4. A. Betten, A. Kerber, A. Kohnert, R. Laue, A. Wassermann, The discovery of simple 7-designs with automorphism group P\(\Gamma \)L(2,32), in AAECC 11, Lecture Notes in Computer Science, vol. 948 (Springer, Heidelberg, 1995), pp. 131–145

    Google Scholar 

  5. A. Betten, A. Kerber, R. Laue, A. Wassermann, Simple \(8\)-designs with small parameters. Des. Codes Cryptogr. 15(1), 5–27 (1998). https://doi.org/10.1023/A:1008263724078

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Betten, R. Laue, A. Wassermann, DISCRETA – A tool for constructing \(t\)-designs. Lehrstuhl II für Mathematik, Universität Bayreuth, http://www.mathe2.uni-bayreuth.de/discreta/

  7. A. Betten, R. Laue, A. Wassermann, Simple 6 and 7-designs on 19 to 33 points. Congr. Numer. 123, 149–160 (1997)

    MathSciNet  MATH  Google Scholar 

  8. A. Betten, R. Laue, A. Wassermann, Some simple \(7\)-designs, eds. by. J.W.P. Hirschfeld, S.S. Magliveras, M.J. de Resmini Geometry, Combinatorial Designs and Related Structures, Proceedings of the First Pythagorean Conference, London Mathematical Society Lecture Notes, vol. 245, pp. 15–25 (1997)

    Google Scholar 

  9. A. Betten, R. Laue, A. Wassermann, New \(t\)-designs and large sets of \(t\)-designs. Discret. Math. 197/198, 83–109 (1999). Also appeared in the special volume Discrete Mathematics, Editor’s Choice, Edition 1999

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Betten, R. Laue, A. Wassermann, Simple 7-designs with small parameters. J. Comb. Des. 7, 79–94 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Betten, R. Laue, A. Wassermann, Simple \(8\)-\((40,11,1440)\) designs. Discret. Appl. Math. 95, 109–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Betten, R. Laue, A. Wassermann, A Steiner 5-design on 36 points. Des. Codes Cryptogr. 17, 181–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Braun, Konstruktion diskreter Strukturen unter Verwendung von Operationen linearer Gruppen auf dem linearen Verband, Ph.D. thesis, University of Bayreuth, Germany (2004)

    Google Scholar 

  14. M. Braun, Some new designs over finite fields. Bayreuth. Math. Schr. 74, 58–68 (2005)

    MathSciNet  MATH  Google Scholar 

  15. M. Braun, Designs over the binary field from the complete monomial group. Australas. J. Comb. 67(3), 470–475 (2017)

    MathSciNet  MATH  Google Scholar 

  16. M. Braun, T. Etzion, P.R.J. Östergård, A. Vardy, A. Wassermann, Existence of \(q\)-analogs of steiner systems. Forum Math. Pi 4(e7), 14 (2016). https://doi.org/10.1017/fmp.2016.5

  17. M. Braun, A. Kerber, R. Laue, Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34(1), 55–70 (2005). https://doi.org/10.1007/s10623-003-4194-z

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Braun, M. Kiermaier, A. Kohnert, R. Laue, Large sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2017). https://doi.org/10.1016/j.jcta.2016.11.004

  19. M. Braun, M. Kiermaier, A. Nakić, On the automorphism group of a binary \(q\)-analog of the fano plane. Eur. J. Comb. 51, 443–457 (2016). https://doi.org/10.1016/j.ejc.2015.07.014

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Braun, A. Kohnert, P.R.J. Östergård, A. Wassermann, Large sets of \(t\)-designs over finite fields. J. Comb. Theory Ser. A 124, 195–202 (2014). https://doi.org/10.1016/j.jcta.2014.01.008

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Braun, P.R.J. Östergård, A. Wassermann, New lower bounds for binary constant-dimension subspace codes. Exp. Math. 1–5 (2016). https://doi.org/10.1080/10586458.2016.1239145

  22. M. Braun, J. Reichelt, \(q\)-analogs of packing designs. J. Comb. Des. 22(7), 306–321 (2014). https://doi.org/10.1002/jcd.21376

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Braun, A. Wassermann, Disjoint \(q\)-Steiner systems in dimension 13 Universität Bayreuth, Bayreuth, Technical Report (2017)

    Google Scholar 

  24. S. Braun, Algorithmen zur computerunterstützten Berechnung von \(q\)-Analoga kombinatorischer Designs. Diplomathesis Universität Bayreuth (2009)

    Google Scholar 

  25. P.J. Cameron, Generalisation of Fisher’s inequality to fields with more than one element. eds. by T.P. McDonough, V.C. Mavron. Combinatorics - Proceedings of the British Combinatorial Conference 1973, London Mathematical Society Lecture Note Series, vol. 13 (Cambridge University Press, Cambridge, 1974), pp. 9–13. https://doi.org/10.1017/CBO9780511662072.003

  26. P.J. Cameron, Locally symmetric designs. Geom. Dedicata 3, 65–76 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. P.J. Cameron, W.M. Kantor, 2-transitive and antiflag transitive collineation groups of finite projective spaces. J. Algebra 60(2), 384–422 (1979). https://doi.org/10.1016/0021-8693(79)90090-5

  28. Y.M. Chee, C.J. Colbourn, S.C. Furino, D.L. Kreher, Large sets of disjoint \(t\)-designs. Australas. J. Comb. 2, 111–119 (1990)

    MathSciNet  MATH  Google Scholar 

  29. C.J. Colbourn, J.H. Dinitz, in Handbook of Combinatorial Designs, 2nd edn, Discrete Mathematics and Its Applications. (Chapman and Hall/CRC , 2006)

    Google Scholar 

  30. M. De Boeck, A. Nakić, Necessary conditions for the existence of 3-designs over finite fields with nontrivial automorphism groups. ArXiv e-prints arXiv:1509.09158 (2015)

  31. P. Delsarte, Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20(2), 230–243 (1976). https://doi.org/10.1016/0097-3165(76)90017-0

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen. Math. Z. 69, 59–89 (1958)

    Google Scholar 

  33. P. Dembowski, Finite Geometries: Reprint of the 1968 Edition. (Springer, 2012)

    Google Scholar 

  34. T. Etzion, A. Vardy, On \(q\)-analogs of Steiner systems and covering designs. Adv. Math. Commun. 5(2), 161–176 (2011). https://doi.org/10.3934/amc.2011.5.161

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Etzion, A. Vardy, Automorphisms of codes in the Grassmann scheme. ArXiv e-prints arXiv:1210.5724 (2012)

  36. A. Fazeli, S. Lovett, A. Vardy, Nontrivial \(t\)-designs over finite fields exist for all \(t\). J. Comb. Theory Ser. A 127, 149–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv. Math. Commun. 3(4), 363–383 (2009). https://doi.org/10.3934/amc.2009.3.363

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Feulner, Canonical forms and automorphisms in the projective space (2013)

    Google Scholar 

  39. T. Feulner, Eine kanonische Form zur Darstellung äquivalenter Codes – Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie. Ph.D. thesis, Universität Bayreuth (2013)

    Google Scholar 

  40. P. Frankl, V. Rödl, Near perfect coverings in graphs and hypergraphs. Eur. J. Comb. 6(4), 317–326 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H Freeman and Company, New York, 1979)

    MATH  Google Scholar 

  42. P.B Gibbons, P.R.J Östergård, in Computational methods in design theory,eds. by C.J. Colbourn, J.H. Dinitz. Handbook of Combinatorial Designs, 2 edn., chap. VII.6, (Chapman and Hall/CRC, 2007), pp. 755–783

    Google Scholar 

  43. I. Gurobi Optimization, Gurobi optimizer reference manual (2016), http://www.gurobi.com

  44. E. Haberberger, A. Betten, R. Laue, Isomorphism classification of \(t\)-designs with group theoretical localisation techniques applied to some Steiner quadruple systems on 20 points. Congr. Numer. 75–96 (2000)

    Google Scholar 

  45. D. Heinlein, M. Kiermaier, S. Kurz, A. Wassermann, Tables of subspace codes. ArXiv e-prints arXiv:1601.02864 (2016)

  46. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedic. 2(4), 425–460 (1974). https://doi.org/10.1007/BF00147570

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II. J. Algebra 93(1), 151–164 (1985). https://doi.org/10.1016/0021-8693(85)90179-6

  48. H. Hitotumatu, K. Noshita, A technique for implementing backtrack algorithms and its application. Inf. Process. Lett. 8(4), 174–175 (1979). https://doi.org/10.1016/0020-0190(79)90016-4

    Article  Google Scholar 

  49. B. Huppert, Endliche Gruppen I, in Grundlehren der mathematischen Wissenschaften, vol. 134 (Springer, Heidelberg, 1967)

    Google Scholar 

  50. IBM: ILOG CPLEX Optimizer (2010), http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  51. M. Kaib, H. Ritter, Block reduction for arbitrary norms Universität Frankfurt, Preprint (1995)

    Google Scholar 

  52. R.M. Karp, Reducibility among combinatorial problems, eds. by R.E. Miller, J.W. Thatcher, J.D. Bohlinger. Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, March 20–22, 1972, (Springer, Boston, 1972), pp. 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

  53. P. Kaski, P.R. Östergård, Classification Algorithms for Codes and Designs (Springer, Berlin, 2006). https://doi.org/10.1007/3-540-28991-7

    Google Scholar 

  54. P. Kaski, O. Pottonen, libexact user’s guide version 1.0. Technical Report 2008-1, Helsinki University of Technology (2008)

    Google Scholar 

  55. M. Kiermaier, S. Kurz, A. Wassermann, The order of the automorphism group of a binary \(q\)-analog of the fano plane is at most two. Designs, Codes and Cryptography (2017). To appear https://doi.org/10.1007/s10623-017-0360-6

  56. M. Kiermaier, M.O. Pavčević, Intersection numbers for subspace designs. J. Comb. Des. 23(11), 463–480 (2015). https://doi.org/10.1002/jcd.21403

    Article  MathSciNet  MATH  Google Scholar 

  57. Klin, M.H.: Investigations of algebras of invariant relations of certain classes of permutation groups. Ph.D. thesis, Nikolaev (1974). In russian

    Google Scholar 

  58. D.E. Knuth, Estimating the efficiency of backtrack programs. Math. Comp. 29(129), 121–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  59. D.E Knuth, Dancing links, eds. by A.W. Roscoe, J. Davies, J. Woodcock. Millennial perspectives in computer science, Cornerstones of computing, (Palgrave, 2000), pp. 187–214

    Google Scholar 

  60. D.E. Knuth, The art of computer programming, vol. 4A (Addison-Wesley, New Jersey, 2011)

    MATH  Google Scholar 

  61. D.E Knuth, Dancing links. Technical Report Fasc 5c, Stanford University (2017)

    Google Scholar 

  62. M. Koch, Neue Strategien zur Lösung von Isomorphieproblemen. Ph.D. thesis, University of Bayreuth, Germany (2016)

    Google Scholar 

  63. A. Kohnert, S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, eds. by J. Calmet, W. Geiselmann, J. Müller-Quade. Mathematical Methods in Computer Science: Essays in Memory of Thomas Beth, (Springer, Heidelberg, 2008), pp. 31–42. https://doi.org/10.1007/978-3-540-89994-5_4

  64. R. Kötter, F.R. Kschischang, Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008). https://doi.org/10.1109/TIT.2008.926449

    Article  MathSciNet  MATH  Google Scholar 

  65. E.S. Kramer, D.M. Mesner, \(t\)-designs on hypergraphs. Discret. Math. 15(3), 263–296 (1976). https://doi.org/10.1016/0012-365X(76)90030-3

    Article  MathSciNet  MATH  Google Scholar 

  66. D.L. Kreher, S.P. Radziszowski, The existence of simple \(6\)-\((14,7,4)\) designs. J. Comb. Theory Ser. A 43, 237–243 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  67. D.L. Kreher, S.P. Radziszowski, Constructing 6-(14,7,4) designs. Contemp. Math. 111, 137–151 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Krčadinac, A. Nakić, M.O. Pavčević, The Kramer–Mesner method with tactical decompositions: some new unitals on \(65\) points. J. Comb. Des. 19(4), 290–303 (2011). https://doi.org/10.1002/jcd.20277

    Article  MathSciNet  MATH  Google Scholar 

  69. J.C. Lagarias, A.M. Odlyzko, Solving low-density subset sum problems. J. Assoc. Comp. Mach. 32, 229–246 (1985). Appeared already in Proc. 24th IEEE Symp. Found. Comp. Sci. (1983), 1–10

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Laue, Halvings on small point sets. J. Comb. Des. 7, 233–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Laue, Constructing objects up to isomorphism, simple \(9\)-designs with small parameters, in Algebraic Combinatorics and Applications, (Springer, New York, 2001), pp. 232–260

    Google Scholar 

  72. R. Laue, Solving isomorphism problems for \(t\)-designs, ed by W.D. Wallis. Designs 2002: Further Computational and Constructive Design Theory (Springer US, Boston, MA , 2003), pp. 277–300. https://doi.org/10.1007/978-1-4613-0245-2_11

  73. R. Laue, S. Magliveras, A. Wassermann, New large sets of \(t\)-designs. J. Comb. Des. 9, 40–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  74. R. Laue, G.R. Omidi, B. Tayfeh-Rezaie, A. Wassermann, New large sets of \(t\)-designs with prescribed groups of automorphisms. J. Comb. Des. 15(3), 210–220 (2007). https://doi.org/10.1002/jcd.20128

    Article  MathSciNet  MATH  Google Scholar 

  75. A.K. Lenstra, H.W. Lenstra Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  76. M.W. Liebeck, The affine permutation groups of rank three. Proc. Lond. Math. Soc. (3) 54(3), 477–516 (1987). https://doi.org/10.1112/plms/s3-54.3.477

  77. S.S Magliveras, The subgroup structure of the Higman-Sims simple group. Ph.D. thesis, University of Birmingham (1970)

    Google Scholar 

  78. R. Mathon, Computational methods in design theory, ed. by A.D. Keedwell. Surveys in combinatorics, Proceeding 13th Br. Combinatorial Conference, London Mathematical Society Lecture Notes, vol. 166 (Guildford/UK, 1991), pp. 101–117

    Google Scholar 

  79. R. Mathon, Searching for spreads and packings, eds by J.W.P. Hirschfeld, S.S. Magliveras, M.J. de Resmini. Geometry, Combinatorial Designs and Related Structures, Proceedings of the first Pythagorean conference, Mathematical Society Lecture Notes, vol. 245, (London, 1997), pp. 161–176

    Google Scholar 

  80. B.D. McKay, A. Piperno, Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

  81. M. Miyakawa, A. Munemasa, S. Yoshiara, On a class of small 2-designs over \(\operatorname{GF}(q)\). J. Comb. Des. 3(1), 61–77 (1995). https://doi.org/10.1002/jcd.3180030108

    Article  MathSciNet  MATH  Google Scholar 

  82. E.H. Moore, Tactical memoranda i-iii. Am. J. Math. 18(4), 264–303 (1896)

    Article  MathSciNet  MATH  Google Scholar 

  83. A. Nakić, M.O. Pavčević, Tactical decompositions of designs over finite fields. Des. Codes Cryptogr. 77(1), 49–60 (2015). https://doi.org/10.1007/s10623-014-9988-7

    Article  MathSciNet  MATH  Google Scholar 

  84. P.Q Nguyen, B. Vallée, in The LLL Algorithm: Survey and Applications, 1st edn. Information Security and Cryptography. (Springer, Heidelberg, 2009). https://doi.org/10.1007/978-3-642-02295-1

  85. S. Niskanen, P.R.J Östergård, Cliquer user’s guide, version 1.0. Technical Report T48, Helsinki University of Technology (2003)

    Google Scholar 

  86. E.T. Parker, On collineations of symmetric designs. Proc. Am. Math. Soc. 8(2), 350–351 (1957). http://www.jstor.org/stable/2033742

  87. W. Pullan, Optimisation of unweighted/weighted maximum independent sets and minimum vertex covers. Discret. Optim. 6(2), 214–219 (2009). https://doi.org/10.1016/j.disopt.2008.12.001

  88. J.F. Sarmiento, Resolutions of PG(5, 2) with point-cyclic automorphism group. J. Comb. Designs 8(1), 2–14 (2000). https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H

  89. B. Schmalz, \(t\)-Designs zu vorgegebener automorphismengruppe. Bayreuth. Math. Schr 41, 1–164 (1992). Ph.D thesis, Universität Bayreuth

    MathSciNet  MATH  Google Scholar 

  90. C.P Schnorr, M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems, in Proceedings of Fundamentals of Computation Theory ’91, Lecture Notes in Computer Science, vol. 529, (Springer, Heidelberg, 1991), pp. 68–85

    Google Scholar 

  91. H. Suzuki, On the inequalities of \(t\)-designs over a finite field. Euro. J. Comb. 11(6), 601–607 (1990). https://doi.org/10.1016/S0195-6698(13)80045-5

    Article  MathSciNet  MATH  Google Scholar 

  92. S. Thomas, Designs over finite fields. Geom. Dedic. 24(2), 237–242 (1987). https://doi.org/10.1007/BF00150939

    Article  MathSciNet  MATH  Google Scholar 

  93. R.J. Walker, An enumerative technique for a class of combinatorial problems. Proc. Sympos. Appl. Math. 10, 91–94 (1960). American Mathematical Society, Providence, R.I. (1960)

    Article  MathSciNet  MATH  Google Scholar 

  94. A. Wassermann, Finding simple \(t\)-designs with enumeration techniques. J. Comb. Des. 6(2), 79–90 (1998). https://doi.org/10.1002/(SICI)1520-6610(1998)6:2<79::AID-JCD1>3.0.CO;2-S

  95. A. Wassermann, Covering the Aztec diamond with one-sided tetrasticks. Bull.Inst. Comb. Appl. (ICA) 32, 70–76 (2001)

    MathSciNet  MATH  Google Scholar 

  96. A. Wassermann, Attacking the market split problem with lattice point enumeration. J. Comb. Optim. 6(1), 5–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  97. J. Zwanzger, A heuristic algorithm for the construction of good linear codes. IEEE Trans. Inf. Theory 54(5), 2388–2392 (2008). https://doi.org/10.1109/TIT.2008.920323

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braun, M., Kiermaier, M., Wassermann, A. (2018). Computational Methods in Subspace Designs. In: Greferath, M., Pavčević, M., Silberstein, N., Vázquez-Castro, M. (eds) Network Coding and Subspace Designs. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70293-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70293-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70292-6

  • Online ISBN: 978-3-319-70293-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics