Advertisement

Semiotics, Epistemology, and Mathematics

  • Michael OtteEmail author
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

The relationship among language, thought, and knowledge has been perceived in different ways throughout the history of Western culture. In general, since the advent of the modern age, mathematical ideas have been considered as universal, objective and accurate, being detached from the contingencies of language and the flaws of communication. However, since the nineteenth century, with the failure of attempts to establish definitive foundations of mathematics, the advent of the expansion of education and the consequent view of knowledge as a social institution, new theoretical perspectives emerged, attributing importance to the relations and similarities between mathematics and language.

Keywords

Semiosis Peirce Mathematics Mathematics education Complementarity 

References

  1. Bacon, F. (1893). The advancement of learning. London: Cassell & Co.Google Scholar
  2. Berkeley, G. (1975). Philosophical works. London: Dent & Sons.Google Scholar
  3. Beth, E., & Piaget, J. (1966). Mathematical epistemology and psychology. Dordrecht: Reidel.Google Scholar
  4. Blauberg, I., Sadovsky, V., & Judin, J. (1977). Systems theory. Moscow: Progress Publishers.Google Scholar
  5. Boutroux, P. (1920). L’Idéal Scientifique Des Mathématiciens. Paris: Alcan.Google Scholar
  6. Carroll, L. (1988). The complete works of Lewis Carroll. London: Penguin Books.Google Scholar
  7. Chomsky, N. (1957). Syntactic structures. The Hague/Paris: Mouton.Google Scholar
  8. Danto, A. (1981). The transfiguration of the commonplace. USA: Harvard University Press.Google Scholar
  9. Deely, J. (1982). Introducing semiotic. Bloomington, IN: Indiana University Press.Google Scholar
  10. Dunbar, R. (1996). Grooming, gossip and the evolution of language. London: Faber and Faber.Google Scholar
  11. Effros, E. (1998). Mathematics as language. In H. G. Dales & G. Oliveri (Eds.), Truth in mathematics (pp. 131–146). Oxford, UK: Oxford University Press.Google Scholar
  12. Eisenstein, E. (1979). The printing press as an agent of change (Vol. 2). Cambridge, UK: Cambridge University Press.Google Scholar
  13. Foucault, M. (1973). The order of things. New York: Vintage Books.Google Scholar
  14. Gellner, E. (1992). Reason and culture. Oxford: Blackwell.Google Scholar
  15. Hahn, H. (1988). Empirismus, Logik, Mathematik. Frankfurt a.m.: Suhrkamp.Google Scholar
  16. Heijenoort, J. V. (1967). Logic as calculus and logic as language. Synthese, 17, 324–330.CrossRefGoogle Scholar
  17. Ignatieff, M. (1984). The needs of strangers. London: Penguin Books.Google Scholar
  18. Klein, J. (1985). Lectures and essays. Annapolis, Maryland: St. John’s College Press.Google Scholar
  19. Leibniz, G. W. (1956). The Leibniz-Clarke correspondence. In H. G. Alexander (Ed.). Manchester: Manchester University Press.Google Scholar
  20. Morris, C. W. (1938). Foundations of the theory of signs. Chicago, IL: University of Chicago Press.Google Scholar
  21. Otte, M. (2003). Complementarity, sets and numbers. Educational Studies in Mathematics, 53, 203–228.CrossRefGoogle Scholar
  22. Peirce, C. S. CP: Collected papers of Charles Sanders Peirce (Vol. I–VI). In C. Hartshorne & P. Weiß (Eds.). Cambridge, Mass: Harvard UP (1931–1935); (Vol. VII–VIII). In A. W. Burks (Ed.). Cambridge, Mass: Harvard UP (1958) (quoted by no. of volume and paragraph); ESP: The essential Peirce (Vol. 2). Bloomington, IN: Indiana University Press (1998).Google Scholar
  23. Pinker, S. (2007). The stuff of thought. New York: Viking Press.Google Scholar
  24. Quine, W. V. O. (1974). The roots of reference. LaSalle, IL: Open Court.Google Scholar
  25. Reidemeister, K. (1957). Raum und Zahl. Heidelberg: Springer.CrossRefGoogle Scholar
  26. Riemann, B. (1892). Gesammelte Mathematische Werke (2nd ed.). In H. Weber & R. Dedekind (Eds.). Leipzig: Teubner.Google Scholar
  27. Russell, B. (1956). Introduction to mathematical philosophy. London: Routledge.Google Scholar
  28. Schlick, M. (1985). General theory of knowledge. LaSalle, IL: Open Court.Google Scholar
  29. Seboek, T. H. (1994). Signs. Toronto: University of Toronto Press.Google Scholar
  30. Zilsel, E. (2003). The social origins of modern science. Dordrecht: Kluwer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of BielefeldMelleGermany

Personalised recommendations