Abstract
The statistics presented by the World Health Organization inform that 90% of the suicides can be attributed to mental illnesses in high-income countries. Besides, previous studies concluded that people with mental illnesses tend to reveal their mental condition on social media, as a way of relief. Thus, the main objective of this work is the analysis of the messages that a user posts online, sequentially through a time period, and detect as soon as possible if this user is at risk of depression. This paper is a preliminary attempt to minimize measures that penalize the delay in detecting positive cases. Our experiments underline the importance of an exhaustive sentiment analysis and a combination of learning algorithms to detect early symptoms of depression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Reddit: https://www.reddit.com.
- 2.
LIWC: http://liwc.wpengine.com/.
References
Brubaker, J.R., Kivran-Swaine, F., Taber, L., Hayes, G.R.: Grief-stricken in a crowd: the language of bereavement and distress in social media. In: Proceedings of ICWSM (2012)
Sowles, S., Connolly, S., Rosas, C., Bharadwaj, M., Bierut, L.J., Cavazos-Rehg, P.A., Krauss, M.J.: A content analysis of depression-related tweets. Comput. Hum. Behav. 1(54), 351–357 (2016)
Cole, D.A., Zelkowitz, R.L., Nick, E., Martin, N.C., Roeder, K.M., Sinclair-McBride, K., Spinelli, T.: Longitudinal and incremental relation of cybervictimization to negative self-cognitions and depressive symptoms in young adolescents. J. Abnorm. Child Psychol. 44(7), 1321–1332 (2016)
De Choudhury, M., Counts, S., Horvitz, E.: Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 47–56. ACM (2013)
Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Web and Social Media (2014)
Wills, G., Syarif, I., Prugel-Bennett, A.: SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA 14(4), 1502–1509 (2016)
Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., Macdonald, C., Cappellato, L., Ferro, N. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 28–39. Springer, Cham (2016). doi:10.1007/978-3-319-44564-9_3
Nadeem, M.: Identifying depression on Twitter. arXiv preprint:1607.07384 (2016)
Park, M., Cha, C., Cha, M.: Depressive moods of users portrayed in Twitter. In: Proceedings of the ACM SIGKDD Workshop on Healthcare Informatics, pp. 1–8 (2012)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS, vol. 7867, pp. 201–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_18
WHO. http://www.euro.who.int. Accessed 06 May 2017
WHO. Preventing Suicide: A Global Imperative (2015)
Srinivasan, P., Yang, C.: Life satisfaction and the pursuit of happiness on Twitter. PLoS ONE 11(3), e0150881 (2016)
Acknowledgements
This work was supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Leiva, V., Freire, A. (2017). Towards Suicide Prevention: Early Detection of Depression on Social Media. In: Kompatsiaris, I., et al. Internet Science. INSCI 2017. Lecture Notes in Computer Science(), vol 10673. Springer, Cham. https://doi.org/10.1007/978-3-319-70284-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-70284-1_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70283-4
Online ISBN: 978-3-319-70284-1
eBook Packages: Computer ScienceComputer Science (R0)