Skip to main content

Towards Suicide Prevention: Early Detection of Depression on Social Media

  • Conference paper
  • First Online:
Internet Science (INSCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10673))

Included in the following conference series:

Abstract

The statistics presented by the World Health Organization inform that 90% of the suicides can be attributed to mental illnesses in high-income countries. Besides, previous studies concluded that people with mental illnesses tend to reveal their mental condition on social media, as a way of relief. Thus, the main objective of this work is the analysis of the messages that a user posts online, sequentially through a time period, and detect as soon as possible if this user is at risk of depression. This paper is a preliminary attempt to minimize measures that penalize the delay in detecting positive cases. Our experiments underline the importance of an exhaustive sentiment analysis and a combination of learning algorithms to detect early symptoms of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Reddit: https://www.reddit.com.

  2. 2.

    LIWC: http://liwc.wpengine.com/.

References

  1. Brubaker, J.R., Kivran-Swaine, F., Taber, L., Hayes, G.R.: Grief-stricken in a crowd: the language of bereavement and distress in social media. In: Proceedings of ICWSM (2012)

    Google Scholar 

  2. Sowles, S., Connolly, S., Rosas, C., Bharadwaj, M., Bierut, L.J., Cavazos-Rehg, P.A., Krauss, M.J.: A content analysis of depression-related tweets. Comput. Hum. Behav. 1(54), 351–357 (2016)

    Google Scholar 

  3. Cole, D.A., Zelkowitz, R.L., Nick, E., Martin, N.C., Roeder, K.M., Sinclair-McBride, K., Spinelli, T.: Longitudinal and incremental relation of cybervictimization to negative self-cognitions and depressive symptoms in young adolescents. J. Abnorm. Child Psychol. 44(7), 1321–1332 (2016)

    Article  Google Scholar 

  4. De Choudhury, M., Counts, S., Horvitz, E.: Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 47–56. ACM (2013)

    Google Scholar 

  5. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Web and Social Media (2014)

    Google Scholar 

  6. Wills, G., Syarif, I., Prugel-Bennett, A.: SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA 14(4), 1502–1509 (2016)

    Article  Google Scholar 

  7. Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., Macdonald, C., Cappellato, L., Ferro, N. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 28–39. Springer, Cham (2016). doi:10.1007/978-3-319-44564-9_3

    Chapter  Google Scholar 

  8. Nadeem, M.: Identifying depression on Twitter. arXiv preprint:1607.07384 (2016)

    Google Scholar 

  9. Park, M., Cha, C., Cha, M.: Depressive moods of users portrayed in Twitter. In: Proceedings of the ACM SIGKDD Workshop on Healthcare Informatics, pp. 1–8 (2012)

    Google Scholar 

  10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS, vol. 7867, pp. 201–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_18

    Chapter  Google Scholar 

  12. WHO. http://www.euro.who.int. Accessed 06 May 2017

  13. WHO. Preventing Suicide: A Global Imperative (2015)

    Google Scholar 

  14. Srinivasan, P., Yang, C.: Life satisfaction and the pursuit of happiness on Twitter. PLoS ONE 11(3), e0150881 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leiva, V., Freire, A. (2017). Towards Suicide Prevention: Early Detection of Depression on Social Media. In: Kompatsiaris, I., et al. Internet Science. INSCI 2017. Lecture Notes in Computer Science(), vol 10673. Springer, Cham. https://doi.org/10.1007/978-3-319-70284-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70284-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70283-4

  • Online ISBN: 978-3-319-70284-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics