A Topic Detection and Visualisation System on Social Media Posts

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10673)


Large amounts of social media posts are produced on a daily basis and monitoring all of them is a challenging task. In this direction we demonstrate a topic detection and visualisation tool in Twitter data, which filters Twitter posts by topic or keyword, in two different languages; German and Turkish. The system is based on state-of-the-art news clustering methods and the tool has been created to handle streams of recent news information in a fast and user-friendly way. The user interface and user-system interaction examples are presented in detail.


Topic detection and visualisation Twitter posts Keyword-based search Topic-based filtering 



This work was supported by the EC-funded projects H2020-645012 (KRISTINA) and H2020-700475 (beAWARE).


  1. 1.
    Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  2. 2.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. AAAI Press (1996)Google Scholar
  3. 3.
    Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (1999)Google Scholar
  4. 4.
    Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS, vol. 7819, pp. 160–172. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  5. 5.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: Hierarchical Dirichlet processes. In: NIPS, pp. 1385–1392 (2004)Google Scholar
  6. 6.
    Kulis, B., Jordan, M.I.: Revisiting k-means: new algorithms via Bayesian nonparametrics. arXiv preprint arXiv:1111.0352 (2011)
  7. 7.
    Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I.: A hybrid framework for news clustering based on the DBSCAN-martingale and LDA. Machine Learning and Data Mining in Pattern Recognition. LNCS, vol. 9729, pp. 170–184. Springer, Cham (2016). CrossRefGoogle Scholar
  8. 8.
    Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., Charrad, M.M.: Package ‘NbClust’. J. Stat. Softw. 61, 1–36 (2014)CrossRefGoogle Scholar
  9. 9.
    Petkos, G., Schinas, M., Papadopoulos, S., Kompatsiaris, Y.: Graph-based multimodal clustering for social multimedia. Multimedia Tools Appl. 76, 7897–7919 (2017). CrossRefGoogle Scholar
  10. 10.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)zbMATHGoogle Scholar
  11. 11.
    Gialampoukidis, I., Liparas, D., Vrochidis, S., Kompatsiaris, I.: Query-based topic detection using concepts and named entities. In: Proceedings of the 1st International Workshop on Multimodal Media Data Analytics (MMDA 2016), pp. 9–13 (2016)Google Scholar
  12. 12.
    Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I., Antoniou, I.: Topic detection using the DBSCAN-Martingale and the time operator. In: 17th Conference of the Applied Stochastic Models and Data Analysis (ASMDA2017) (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Information Technologies Institute, Centre for Research and Technology HellasThessalonikiGreece

Personalised recommendations