Advertisement

A Topic Detection and Visualisation System on Social Media Posts

  • Stelios AndreadisEmail author
  • Ilias Gialampoukidis
  • Stefanos Vrochidis
  • Ioannis Kompatsiaris
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10673)

Abstract

Large amounts of social media posts are produced on a daily basis and monitoring all of them is a challenging task. In this direction we demonstrate a topic detection and visualisation tool in Twitter data, which filters Twitter posts by topic or keyword, in two different languages; German and Turkish. The system is based on state-of-the-art news clustering methods and the tool has been created to handle streams of recent news information in a fast and user-friendly way. The user interface and user-system interaction examples are presented in detail.

Keywords

Topic detection and visualisation Twitter posts Keyword-based search Topic-based filtering 

Notes

Acknowledgements

This work was supported by the EC-funded projects H2020-645012 (KRISTINA) and H2020-700475 (beAWARE).

References

  1. 1.
    Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-1-4614-3223-4_4 CrossRefGoogle Scholar
  2. 2.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 226–231. AAAI Press (1996)Google Scholar
  3. 3.
    Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM (1999)Google Scholar
  4. 4.
    Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS, vol. 7819, pp. 160–172. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37456-2_14 CrossRefGoogle Scholar
  5. 5.
    Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Sharing clusters among related groups: Hierarchical Dirichlet processes. In: NIPS, pp. 1385–1392 (2004)Google Scholar
  6. 6.
    Kulis, B., Jordan, M.I.: Revisiting k-means: new algorithms via Bayesian nonparametrics. arXiv preprint arXiv:1111.0352 (2011)
  7. 7.
    Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I.: A hybrid framework for news clustering based on the DBSCAN-martingale and LDA. Machine Learning and Data Mining in Pattern Recognition. LNCS, vol. 9729, pp. 170–184. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41920-6_13 CrossRefGoogle Scholar
  8. 8.
    Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., Charrad, M.M.: Package ‘NbClust’. J. Stat. Softw. 61, 1–36 (2014)CrossRefGoogle Scholar
  9. 9.
    Petkos, G., Schinas, M., Papadopoulos, S., Kompatsiaris, Y.: Graph-based multimodal clustering for social multimedia. Multimedia Tools Appl. 76, 7897–7919 (2017).  https://doi.org/10.1007/s11042-016-3378-2 CrossRefGoogle Scholar
  10. 10.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)zbMATHGoogle Scholar
  11. 11.
    Gialampoukidis, I., Liparas, D., Vrochidis, S., Kompatsiaris, I.: Query-based topic detection using concepts and named entities. In: Proceedings of the 1st International Workshop on Multimodal Media Data Analytics (MMDA 2016), pp. 9–13 (2016)Google Scholar
  12. 12.
    Gialampoukidis, I., Vrochidis, S., Kompatsiaris, I., Antoniou, I.: Topic detection using the DBSCAN-Martingale and the time operator. In: 17th Conference of the Applied Stochastic Models and Data Analysis (ASMDA2017) (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stelios Andreadis
    • 1
    Email author
  • Ilias Gialampoukidis
    • 1
  • Stefanos Vrochidis
    • 1
  • Ioannis Kompatsiaris
    • 1
  1. 1.Information Technologies Institute, Centre for Research and Technology HellasThessalonikiGreece

Personalised recommendations