Advertisement

Controlled Homomorphic Encryption: Definition and Construction

  • Yvo Desmedt
  • Vincenzo IovinoEmail author
  • Giuseppe Persiano
  • Ivan Visconti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10323)

Abstract

Fully Homomorphic Encryption schemes (FHEs) and Functional Encryption schemes (FunctEs) have a tremendousimpact in cryptography both for the natural questions that they address and for the wide range of applications in which they have been (sometimes critically) used.

In this work we put forth the notion of a Controllable Homomorphic Encryption scheme (CHES), a new primitive that includes features of both FHEs and FunctEs. In a CHES it is possible (similarly to a FHE) to homomorphically evaluate a ciphertext \(\mathsf{Ct}=\mathsf{Enc}(m)\) and a circuit C therefore obtaining \(\mathsf{Enc}(C(m))\) but only if (similarly to a FunctE) a token for C has been received from the owner of the secret key.

We discuss difficulties in constructing a CHES and then show a construction based on any FunctE.

As a byproduct our CHES also represents a FunctE supporting the re-encryption functionality and in that respect improves existing solutions.

Keywords

Functional encryption Non-malleability Fully homomorphic encryption 

Notes

Acknowledgements

Vincenzo Iovino is supported by a FNR CORE grant (no. FNR11299247) of the Luxembourg National Research Fund. Part of this work was done while Vincenzo Iovino was at the University of Warsaw and was supported by the WELCOME/2010-4/2 grant funded within the framework of the EU Innovative Economy Operational Programme. Ivan Visconti was supported in part by “GNCS - INdAM” and EU COST Action IC1306.

Supplementary material

References

  1. 1.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_28 CrossRefGoogle Scholar
  2. 2.
    Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wilson, D.A.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 65–84. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45239-0_5 CrossRefGoogle Scholar
  3. 3.
    Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_19 CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption for restricted computations. In: ITCS, pp. 350–366 (2012)Google Scholar
  6. 6.
    Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_3 CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)Google Scholar
  8. 8.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (Standard) LWE. In: FOCS, pp. 97–106 (2011)Google Scholar
  9. 9.
    De Caro, A., Iovino, V.: On the power of rewinding simulators in functional encryption. Des. Codes Crypt. 84, 1–27 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_29 CrossRefGoogle Scholar
  11. 11.
    Desmedt, Y.: Computer security by redefining what a computer is. In: Proceedings on the 1992–1993 Workshop on New Security Paradigms, NSPW 1992–1993, pp. 160–166. ACM, New York (1993)Google Scholar
  12. 12.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, 6–8 May 1991, pp. 542–552. ACM Press (1991)Google Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, Berkeley, CA, USA, October 26–29 2013, pp. 40–49. IEEE Computer Society (2013)Google Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  15. 15.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). crypto.stanford.edu/craig
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, Maryland, USA, 31 May–2 June 2009, pp. 169–178. ACM Press (2009)Google Scholar
  17. 17.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11 CrossRefGoogle Scholar
  18. 18.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_13 CrossRefGoogle Scholar
  19. 19.
    Iovino, V., Żebroski, K.: Simulation-based secure functional encryption in the random oracle model. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 21–39. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22174-8_2 CrossRefGoogle Scholar
  20. 20.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_6 CrossRefGoogle Scholar
  21. 21.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006).  https://doi.org/10.1007/11818175_16 CrossRefGoogle Scholar
  22. 22.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33 CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2017

Authors and Affiliations

  • Yvo Desmedt
    • 1
    • 2
  • Vincenzo Iovino
    • 3
    Email author
  • Giuseppe Persiano
    • 4
  • Ivan Visconti
    • 5
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.University College LondonLondonUK
  3. 3.University of LuxembourgLuxembourg CityLuxembourg
  4. 4.DISA-MISUniversity of SalernoFiscianoItaly
  5. 5.DIEMUniversity of SalernoFiscianoItaly

Personalised recommendations