Decentralized Execution of Smart Contracts: Agent Model Perspective and Its Implications

  • Lin ChenEmail author
  • Lei Xu
  • Nolan Shah
  • Zhimin Gao
  • Yang Lu
  • Weidong Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10323)


Smart contracts are one of the most important applications of the blockchain. Most existing smart contract systems assume that for executing contract over a network of decentralized nodes, the outcome in accordance with the majority can be trusted. However, we observe that users involved with a smart contract may strategically take actions to manipulate execution of the contract for purpose to increase their own benefits. We propose an agent model, as the underpinning mechanism for contract execution over a network of decentralized nodes and public ledger, to address this problem and discuss the possibility of preventing users from manipulating smart contract execution by applying principles of game theory and agent based analysis.


Smart contract Blockchain Public ledger Game theory 


  1. 1.
    Buterin, V.: A next-generation smart contract and decentralized application platform. White Paper (2014)Google Scholar
  2. 2.
    Dunbar, G., Wang, R., Wang, X.: Rationalizing irrational beliefs. Theor. Econ. Lett. 6(06), 1219 (2016)CrossRefGoogle Scholar
  3. 3.
    Duong, T., Fan, L., Zhou, H.S.: 2-hop blockchain: Combining proof-of-work and proof-of-stake securely (2016)Google Scholar
  4. 4.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014). Google Scholar
  5. 5.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). Google Scholar
  6. 6.
    Hofstadter, D.R.: Dilemmas for superrational thinkers, leading up to a luring lottery. Sci. Am. 6, 267–275 (1983)Google Scholar
  7. 7.
    Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 365–382. ACM (2016)Google Scholar
  8. 8.
    Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bitcoin mining pools: a cooperative game theoretic analysis. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 919–927. International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  9. 9.
    Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269. ACM (2016)Google Scholar
  10. 10.
    McKelvey, R.D., Palfrey, T.R.: An experimental study of the centipede game. Econometrica: J. Econ. Soc. 803–836 (1992)Google Scholar
  11. 11.
    McKelvey, R.D., Palfrey, T.R.: Quantal response equilibria for extensive form games. Exp. Econ. 1(1), 9–41 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  13. 13.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)Google Scholar
  14. 14.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. IACR Cryptol. ePrint Arch. 2016, 454 (2016)zbMATHGoogle Scholar
  15. 15.
    Rosenthal, R.W.: Games of perfect information, predatory pricing and the chain-store paradox. J. Econ. Theory 25(1), 92–100 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. arXiv preprint arXiv:1507.06183 (2015)
  17. 17.
    Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer, Heidelberg (2015). CrossRefGoogle Scholar
  18. 18.
    Szabo, N.: Formalizing and securing relationships on public networks. First Mon. 2(9) (1997)Google Scholar
  19. 19.
    Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind Bitcoin is Changing Money, Business, and the World. Penguin, Westminster (2016)Google Scholar
  20. 20.
    Zauner, K.G.: A payoff uncertainty explanation of results in experimental centipede games. Games Econ. Behav. 26(1), 157–185 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© International Financial Cryptography Association 2017

Authors and Affiliations

  • Lin Chen
    • 1
    Email author
  • Lei Xu
    • 1
  • Nolan Shah
    • 1
  • Zhimin Gao
    • 1
  • Yang Lu
    • 1
  • Weidong Shi
    • 1
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations