Phylogeny of the Family Staphylinidae Based on Molecular Data: A Review

Chapter

Abstract

Molecular phylogeny of staphylinid beetles as published in 36 papers is reviewed. For every paper, the markers used, the size of the analyzed dataset, and the taxonomic focus are listed. Availability of sequence and genomic data for the entire family and all subfamilies is summarized. The current knowledge of staphylinid phylogeny is presented in a supertree. Phylogenetic relationships between the Staphylinidae and other staphylinoid families, among and within staphylinid subfamilies, are discussed.

References

  1. Ahn K-J, Jeon M-J, Branham MA (2010) Phylogeny, biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini based on morphological and molecular characters (Coleoptera: Staphylinidae: Aleocharinae). Cladistics 26(4):344–358.  https://doi.org/10.1111/j.1096-0031.2009.00290.xCrossRefGoogle Scholar
  2. Akanni WA, Wilkinson M, Creevey CJ et al (2015) Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics. R Soc Open Sci 2(140436):1–9.  https://doi.org/10.1098/rsos.140436CrossRefGoogle Scholar
  3. Ballard JWO, Thayer MK, Newton AF Jr et al (1998) Data sets, partitions, and characters: philosophies and procedures for analyzing multiple data sets. Syst Biol 47(3):367–396.  https://doi.org/10.1080/106351598260770CrossRefPubMedGoogle Scholar
  4. Baum BR (1992) Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41(1):3–10.  https://doi.org/10.2307/1222480CrossRefGoogle Scholar
  5. Bininda-Emonds ORP (ed) (2004) Phylogenetic supertrees. Combining information to reveal the tree of life, Computational biology series, vol 4. Kluwer Academic, DordrechtGoogle Scholar
  6. Bininda-Emonds ORP, Sanderson MJ (2001) Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Syst Biol 50(4):565–579.  https://doi.org/10.1080/10635150120358CrossRefPubMedGoogle Scholar
  7. Bininda-Emonds ORP, Jones KE, Price SA et al (2004) Garbage in, garbage out. Data issues in supertree construction. In: Bininda-Emonds ORP (ed) Phylogenetic supertrees. Combining information to reveal the tree of life, Computational biology series, vol 4. Kluwer Academic, Dordrecht, pp 267–280CrossRefGoogle Scholar
  8. BOLD Systems (2017) The barcode of life data systems. http://www.boldsystems.org. Accessed 7 June 2017.
  9. Bouchard P, Bousquet Y, Davies AE et al (2011) Family-group names in Coleoptera (Insecta). ZooKeys 88:1–972.  https://doi.org/10.3897/zookeys.88.807CrossRefGoogle Scholar
  10. Brunke AJ, Chatzimanolis S, Schillhammer H et al (2016) Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification. Cladistics 32(4):427–451.  https://doi.org/10.1111/cla.12139CrossRefGoogle Scholar
  11. Caterino MS, Hunt T, Vogler AP (2005) On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Mol Phylogenet Evol 34(3):655–672.  https://doi.org/10.1016/j.ympev.2004.11.012CrossRefPubMedGoogle Scholar
  12. Caterino MS, Chatzimanolis S, Richmond MP (2015) On the origins of the insect fauna of California’s Channel islands: a comparative phylogeographic study of island beetles. Monogr West North Am Nat 7(1):276–296.  https://doi.org/10.3398/042.007.0121CrossRefGoogle Scholar
  13. Chani-Posse MR, Brunke AJ, Chatzimanolis S et al (2017) Phylogeny of the hyper-diverse rove beetle subtribe Philonthina with implications for classification of the tribe Staphylinini (Coleoptera: Staphylinidae). Cladistics.  https://doi.org/10.1111/cla.12188
  14. Chatzimanolis S (2014) Phylogeny of xanthopygine rove beetles (Coleoptera) based on six molecular loci. Syst Entomol 39(1):141–149.  https://doi.org/10.1111/syen.12040CrossRefGoogle Scholar
  15. Chatzimanolis S, Caterino MS (2007) Toward a better understanding of the “transverse range break”: lineage diversification in southern California. Evolution 61(9):2127–2141.  https://doi.org/10.1111/j.1558-5646.2007.00186.xCrossRefPubMedGoogle Scholar
  16. Chatzimanolis S, Cohen IM, Schomann A et al (2010) Molecular phylogeny of the mega-diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). Zool Scr 39(5):436–449.  https://doi.org/10.1111/j.1463-6409.2010.00438.xCrossRefGoogle Scholar
  17. Elven H, Bachmann L, Gusarov VI (2010) Phylogeny of the tribe Athetini (Coleoptera: Staphylinidae) inferred from mitochondrial and nuclear sequence data. Mol Phylogenet Evol 57(1):84–100.  https://doi.org/10.1016/j.ympev.2010.05.023CrossRefPubMedGoogle Scholar
  18. Elven H, Bachmann L, Gusarov VI (2012) Molecular phylogeny of the Athetini–Lomechusini–Ecitocharini clade of aleocharine rove beetles (Insecta). Zool Scr 41(6):617–636.  https://doi.org/10.1111/j.1463-6409.2012.00553.xCrossRefPubMedPubMedCentralGoogle Scholar
  19. Erixon P, Svennblad B, Britton T et al (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52(5):665–673.  https://doi.org/10.1080/10635150390235485CrossRefPubMedGoogle Scholar
  20. Fresneda J, Grebennikov VV, Ribera I (2011) The phylogenetic and geographic limits of Leptodirini (Insecta: Coleoptera: Leiodidae: Cholevinae), with a description of Sciaphyes shestakovi sp.n. from the Russian Far East. Arthropod Syst Phyl 69(2):99–123Google Scholar
  21. Grebennikov VV, Newton AF (2009) Good-bye Scydmaenidae, or why the ant-like stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera). Eur J Entomol 106(2):275–301.  10.14411/eje.2009.035CrossRefGoogle Scholar
  22. Grebennikov VV, Smetana A (2015) DNA barcoding and regional diversity of understudied Micropeplinae (Coleoptera: Staphylinidae) in southwest China: phylogenetic implications and a new Micropeplus from Mount Emei. Zootaxa 3919(3):583–599.  10.11646/zootaxa.3919.3.8CrossRefPubMedGoogle Scholar
  23. Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318(5858):1913–1916.  https://doi.org/10.1126/science.1146954CrossRefPubMedGoogle Scholar
  24. Ikeda H, Kagaya T, Kubota K et al (2008) Evolutionary relationships among food habit, loss of flight, and reproductive traits: life-history evolution in the Silphinae (Coleoptera: Silphidae). Evolution 62(8):2065–2079.  https://doi.org/10.1111/j.1558-5646.2008.00432.xCrossRefPubMedGoogle Scholar
  25. Jeon M-J, Song J-H, Ahn K-J (2012) Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. Zool Scr 41(2):150–159.  https://doi.org/10.1111/j.1463-6409.2011.00510.xCrossRefGoogle Scholar
  26. Koerner L, Laumann M, Betz O et al (2013) Loss of the sticky harpoon – COI sequences indicate paraphyly of Stenus with respect to Dianous (Staphylinidae, Steninae). Zool Anz 252(3):337–347.  https://doi.org/10.1016/j.jcz.2012.09.002CrossRefGoogle Scholar
  27. Lang C, Koerner L, Betz O et al (2015) Phylogenetic relationships and chemical evolution of the genera Stenus and Dianous (Coleoptera: Staphylinidae). Chemoecology 25(1):11–24.  https://doi.org/10.1007/s00049-014-0171-4CrossRefGoogle Scholar
  28. Leschen RAB, Buckley TR, Harman HM et al (2008) Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics. Mol Ecol 17(5):1256–1276.  https://doi.org/10.1111/j.1365-294X.2007.03630.xCrossRefPubMedGoogle Scholar
  29. Maruyama M, Parker J (2017) Deep-time convergence in rove beetle symbionts of army ants. Curr Biol 27(6):920–926.  https://doi.org/10.1016/j.cub.2017.02.030CrossRefPubMedGoogle Scholar
  30. Maus C, Peschke K, Dobler S (2001) Phylogeny of the genus Aleochara inferred from mitochondrial cytochrome oxidase sequences (Coleoptera: Staphylinidae). Mol Phylogenet Evol 18(2):202–216.  https://doi.org/10.1006/mpev.2000.0874CrossRefPubMedGoogle Scholar
  31. McKenna DD, Farrell BD, Caterino MS et al (2015a) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Syst Entomol 40(1):35–60.  https://doi.org/10.1111/syen.12093CrossRefGoogle Scholar
  32. McKenna DD, Wild AL, Kanda K et al (2015b) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40(4):835–880.  https://doi.org/10.1111/syen.12132CrossRefGoogle Scholar
  33. O’Keefe ST (2005) 11.5. Scydmaenidae Leach, 1815. In: Beutel RG, Leschen RAB (eds) Coleoptera, beetles. Vol 1: Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Handbook of zoology. Vol IV Arthropoda: insecta. Part 38. Walter de Gruyter, Berlin, pp 280–288Google Scholar
  34. Osswald J, Bachmann L, Gusarov VI (2013) Molecular phylogeny of the beetle tribe Oxypodini (Coleoptera: Staphylinidae: Aleocharinae). Syst Entomol 38(3):507–522.  https://doi.org/10.1111/syen.12011CrossRefGoogle Scholar
  35. Parker J (2016) Emergence of a superradiation: pselaphine rove beetles in mid-Cretaceous amber from Myanmar and their evolutionary implications. Syst Entomol 41(3):541–566.  https://doi.org/10.1111/syen.12173CrossRefGoogle Scholar
  36. Parker J, Grimaldi DA (2014) Specialized myrmecophily at the ecological dawn of modern ants. Curr Biol 24(20):1–7.  https://doi.org/10.1016/j.cub.2014.08.068CrossRefGoogle Scholar
  37. Ragan MA (1992) Phylogenetic inference based on matrix representation of trees. Mol Phylogenet Evol 1(1):53–58.  https://doi.org/10.1016/1055-7903(92)90035-FCrossRefPubMedGoogle Scholar
  38. Ross AH, Rodrigo AG (2004) An assessment of matrix representation with compatibility in supertree construction. In: Bininda-Emonds ORP (ed) Phylogenetic supertrees. Combining information to reveal the tree of life, Computational biology series, vol 4. Kluwer Academic, Dordrecht, pp 35–63CrossRefGoogle Scholar
  39. Schomann AM, Solodovnikov A (2017) Phylogenetic placement of the austral rove beetle genus Hyperomma triggers changes in classification of Paederinae (Coleoptera: Staphylinidae). Zool Scr 46(3):336–347.  https://doi.org/10.1111/zsc.12209CrossRefGoogle Scholar
  40. Serri S, Frisch J, von Rintelen T (2016) Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae). ZooKeys 626:67–86.  https://doi.org/10.3897/zookeys.626.8155CrossRefGoogle Scholar
  41. Song J-H, Ahn K-J (2013) Molecular phylogeny reveals multiple origins of seashore colonisation in the genus Aleochara Gravenhorst (Coleoptera: Staphylinidae: Aleocharinae). Invertebr Syst 27(2):239–244.  https://doi.org/10.1071/IS12040CrossRefGoogle Scholar
  42. Song J-H, Ahn K-J (2014) Species delimitation in the Aleochara fucicola species complex (Coleoptera: Staphylinidae: Aleocharinae) and its phylogenetic relationships. Zool Scr 43(6):629–640.  https://doi.org/10.1111/zsc.12077CrossRefGoogle Scholar
  43. Song J-H, Ahn K-J (2017) Species trees, temporal divergence and historical biogeography of coastal rove beetles (Coleoptera: Staphylinidae) reveal their early Miocene origin and show that most divergence events occurred in the early Pliocene along the Pacific coasts. Cladistics.  https://doi.org/10.1111/cla.12206
  44. Thayer MK (2005) 11.7. Staphylinidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Coleoptera, beetles. Vol 1: Morphology and systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Handbook of zoology. Vol IV Arthropoda: insecta. Part 38. Walter de Gruyter, Berlin, pp 296–344Google Scholar
  45. Thomas JC (2009) A preliminary molecular investigation of Aleocharine phylogeny (Coleoptera: Staphylinidae). Ann Entomol Soc Am 102(2):189–195.  https://doi.org/10.1603/008.102.0201CrossRefGoogle Scholar
  46. Timmermans MJTN, Barton C, Haran J et al (2016) Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol Evol 8(1):161–175.  https://doi.org/10.1093/gbe/evv241CrossRefGoogle Scholar
  47. von Beeren C, Maruyama M, Kronauer DJC (2016a) Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles. Mol Ecol 25(4):990–1005.  https://doi.org/10.1111/mec.13500CrossRefGoogle Scholar
  48. von Beeren C, Maruyama M, Kronauer DJC (2016b) Community sampling and integrative taxonomy reveal new species and host specificity in the army ant-associated beetle genus Tetradonia (Coleoptera, Staphylinidae, Aleocharinae). PLoS One 11(11):e0165056.  https://doi.org/10.1371/journal.pone.0165056CrossRefGoogle Scholar
  49. Wild AL, Maddison DR (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet Evol 48(3):877–891.  https://doi.org/10.1016/j.ympev.2008.05.023CrossRefPubMedGoogle Scholar
  50. Zhang X, Zhou H-Z (2013) How old are the rove beetles (Insecta: Coleoptera: Staphylinidae) and their lineages? Seeking an answer with DNA. Zool Sci 30(6):490–501.  https://doi.org/10.2108/zsj.30.490CrossRefPubMedGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Natural History MuseumUniversity of OsloOsloNorway

Personalised recommendations