Biology of Acarophagous Scydmaeninae

  • Paweł JałoszyńskiEmail author


Some Scydmaeninae are strict specialists that feed exclusively on heavily sclerotized oribatid or uropodine mites. The chapter reviews the available literature on the feeding habits of Euconnus , Stenichnus , Scydmaenus , and Cephennium beetles and presents previously unpublished observations on Neuraphes and Microscydmus species. Species with unspecialized mouthparts attack the mite’s gnathosoma, removing movable parts to gain access to soft tissues. They also often remove genital or anal plates to feed through the resulting openings. In Euconnus that are specialized to feed on ptyctimous (i.e., capable of encapsulating) oribatids, a sticky droplet of digestive juice exuded onto the predator’s mouthparts is used to capture mites. The prey is then lifted and covered with noxious digestive juice, which weakens or kills the encapsulated mite . Once the muscles responsible for maintaining the encapsulation are relaxed, the prey’s prodorsum opens, and Euconnus beetles use their mandibles to crush the mite’s ventral plates and gain access to the flesh. In Scydmaenus that are specialized to feed on non-ptyctimous Oribatida and Uropodina, the mandibles play a major role both in capturing prey and in breaching the mite’s defenses. The prey’s legs are often cut off if they are long or spiny, which facilitates the subsequent attack on the gnathosoma. Cephenniini are the “hole scrapers”: they have paired labial suckers on the prementum, which are used to immobilize their prey. Once the mite adheres to the suckers, the predator’s mandibles slowly grind a small hole in the prey’s cuticle. Digestive juices are then injected; through the same puncture, liquefied tissues are ingested. The entire feeding process can take many hours. Some species show preferences toward particular mite taxa and may play a significant role in the oribatid or uropodine mite population dynamics.


  1. Arillo A, Subías LS, Shtanchaeva U (2012) A new species of fossil oribatid mite (Acariformers, Oribatida, Trhypochthoniidae) from the Lower Cretaceous amber of San Just (Terruel Province, Spain). Syst Appl Acarol 17(1):106–112Google Scholar
  2. Betz O, Thayer M, Newton AF (2003) Comparative morphology and evolutionary pathways of the mouthparts in spore-feeding Staphylinoidea (Coleoptera). Acta Zool 84(3):179–238CrossRefGoogle Scholar
  3. Jałoszyński P (2012a) Adults of European ant-like stone beetles (Coleoptera: Staphylinidae: Scydmaeninae) Scydmaenus tarsatus Müller & Kunze and S. hellwigii (Herbst) prey on soft-bodied arthropods. Entomol Sci 15:35–41CrossRefGoogle Scholar
  4. Jałoszyński P (2012b) Observations on cannibalism and feeding on dead arthropods in Scydmaenus tarsatus Müller & Kunze. Genus 23(1):25–31Google Scholar
  5. Jałoszyński P (2013) Revision of subgenera of Stenichnus Thomson, with review of Australo-Pacific species (Coleoptera, Staphylinidae, Scydmaeninae). Zootaxa 3630(1):39–79CrossRefPubMedGoogle Scholar
  6. Jałoszyński P (2015) Ptenidium pusillum (Gyllenhal, 1808) from egg to pupa (Coleoptera: Ptiliidae). Zootaxa 3948(3):361–421CrossRefPubMedGoogle Scholar
  7. Jałoszyński P (2016) Mature larva of Stenichnus godarti (Latreille) (Coleoptera: Staphylinidae, Scydmaeninae): redescription, hypothesis of displaced epicranial sutures and alternative interpretation of homology between chaetotaxic structures. Zootaxa 4196(1):77–94CrossRefGoogle Scholar
  8. Jałoszyński P, Beutel R (2012) Functional morphology and evolution of specialized mouthparts of Cephenniini (Scydmaeninae, Staphylinidae). Arthr Str Dev 41:593–607CrossRefGoogle Scholar
  9. Jałoszyński P, Kilian A (2012) Larval morphology of Scydmaenus tarsatus and S. hellwigii, with notes on feeding behavior and a review of bibliography on preimaginal stages of ant-like stone beetles (Coleoptera: Staphylinidae, Scydmaeninae). Eur J Entomol 109:587–601CrossRefGoogle Scholar
  10. Jałoszyński P, Olszanowski Z (2013) Specialized feeding of Euconnus pubicollis (Coleoptera: Staphylinidae, Scydmaeninae) on oribatid mites: prey preferences and hunting behaviour. Eur J Entomol 110:339–353CrossRefGoogle Scholar
  11. Jałoszyński P, Olszanowski Z (2015) Feeding of Scydmaenus rufus (Coleoptera: Staphylinidae, Scydmaeninae) on oribatid and uropodine mites: prey preferences and hunting behaviour. Eur J Entomol 112:151–164Google Scholar
  12. Jałoszyński P, Olszanowski Z (2016) Feeding of two species of Scydmaeninae ‘hole scrapers’, Cephennium majus and C. ruthenum (Coleoptera: Staphylinidae), on oribatid mites. Eur J Entomol 113:372–386CrossRefGoogle Scholar
  13. Jałoszyński P, Peris D (2016) Cretaceous amber inclusions of Spain and Myanmar demonstrate early diversification and wide dispersal of Cephenniitae (Coleoptera: Staphylinidae: Scydmaeninae). Cret Res 57:190–198CrossRefGoogle Scholar
  14. Jałoszyński P, Perrichot V, Peris D (2017) Ninety million years of chasing mites by ant-like stone beetles. Gondwana Res 48:1–6CrossRefGoogle Scholar
  15. Jeffries MJ, Lawton JH (1984) Enemy free space and the structure of ecological communities. Biol J Linn Soc 23:269–286CrossRefGoogle Scholar
  16. Leleup N (1968) Révision des Mastigini de l’Afrique du Sud. Ann Mus Roy Afr Centr, Tervuren 166:1–107Google Scholar
  17. Masuko K (1994) Specialized predation on oribatid mites by two species of the ant genus Myrmecina (Hymenoptera: Formicidae). Psyche 101:159–173CrossRefGoogle Scholar
  18. Molleman F, Walter DE (2001) Niche segregation and can-openers: Scydmaenid beetles as predators of armoured mites in Australia. In: Halliday RB, Walter DE, Proctor HC, Norton RA, Colloff MJ (eds) Acarology: Proceedings of the 10th international congress. CSIRO Publishing, Melbourne, pp 283–288Google Scholar
  19. Norton RA, Bonamo PM, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial deposit near Gilboa, New York. J Paleontol 62(2):259–269CrossRefGoogle Scholar
  20. O’Keefe ST, Monteith GB (2000) Clidicus abbotensis O’Keefe, a new species of Scydmaenidae (Coleoptera: Staphylinoidea) from Australia with description of the larva. Mem Queensland Mus 46:211–223Google Scholar
  21. Pachl P, Domes K, Schulz G, Norton RA, Scheu S, Schaefer I, Maraun M (2012) Convergent evolution of defense mechanisms in oribatid mites (Acari, Oribatida) shows no “ghosts of predation past”. Mol Phylogenet Evol 65:412–420CrossRefPubMedGoogle Scholar
  22. Park O (1947) Observations on Batrisodes (Coleoptera: Pselaphidae), with particular reference to the American species east of the Rocky Mountains. Bull Chicago Acad Sci 8:43–132Google Scholar
  23. Peschel K, Norton RA, Scheu S, Maraun M (2006) Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite Pergamasus septentrionalis. Soil Biol Biochem 38:2985–2989CrossRefGoogle Scholar
  24. Reitter E (1909) Fauna Germanica. Die Käfer des Deutschen Reiches, vol 2. Lutz KG, StuttgartGoogle Scholar
  25. Riha G (1951) Zur Ökologie der Oribatiden in Kalksteinböden. Zool Jb Syst 80:408–450Google Scholar
  26. Saporito RA, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci U S A 104:8885–8890CrossRefPubMedPubMedCentralGoogle Scholar
  27. Saporito RA, Norton RA, Andriamaharavo NR, Garraffo HM, Spande TF (2011) Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs. J Chem Ecol 37:213–218CrossRefPubMedGoogle Scholar
  28. Schmelzle S, Helfen L, Norton RA, Heethoff M (2008) The ptychoid defensive mechanism in Euphthiracaroidea (Acari, Oribatida): a comparison of exoskeletal elements. Soil Org 80:233–247Google Scholar
  29. Schmelzle S, Helfen L, Norton RA, Heethoff M (2009) The ptychoid defensive mechanism in Euphthiracaroidea (Acari: Oribatida): a comparison of muscular elements with functional considerations. Arthr Struct Dev 38:461–472CrossRefGoogle Scholar
  30. Schmelzle S, Helfen L, Norton RA, Heethoff M (2010) The ptychoid defensive mechanism in Phthiracarus longulus (Acari, Oribatida, Phthiracaroidea): exoskeletal and muscular elements. Soil Org 82:253–273Google Scholar
  31. Schmid R (1988) Morphologische Anpassungen in einem Räuber-Beute-System: Ameisenkäfer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zool Jahrb, Abt Syst, Ökol Geogr Tiere 115:207–228Google Scholar
  32. Schuster R (1966a) Über den Beutefang des Ameisenkäfers Cephennium austriacum Reitter. Naturwiss 53:113CrossRefGoogle Scholar
  33. Schuster R (1966b) Scydmaeniden-Larven als Milbenräuber. Naturwiss 53:439–440CrossRefGoogle Scholar
  34. Subías LS, Arillo A (2002) Oribatid fossil mites from the Upper Devonian of South Mountain, New York and the Lower Carboniferous of County Antrim, North Ireland (Acariformes, Oribatida). Estud Mus Cienc Nat Álava 17:93–106Google Scholar
  35. Wickings K, Grandy AS (2011) The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biol Biochem 43:351–358CrossRefGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Museum of Natural History, University of WrocławWrocławPoland

Personalised recommendations