The Biology of Steninae



Current knowledge of the biology of the megadiverse beetle subfamily Steninae is reviewed here with regard to its systematics, general morphology, life history, behaviour, (chemical) ecology and evolution into various ecomorphs. Comprising >3000 species worldwide, the staphylinid genus Stenus is one of the most speciose animal genera on Earth. Steninae are well characterized by a number of adult and larval autapomorphies. Adult Stenus beetles are diurnal, optically oriented, epigeic predators of springtails and other small arthropods. The most obvious autapomorphic character defining Stenus is its protrusible elongated labium with the paraglossae being modified into adhesive pads. This prey-capture apparatus can be rapidly ejected towards potential prey by increased haemolymph pressure. The paired anal glands of Steninae are described morphologically and with respect to their secretion chemistry. The alkaloid and terpenoid secretions significantly act as defensive compounds against both bacteria and various predators. The unique skimming behaviour of selected species on water surfaces is described in detail, and the chemotaxonomic value of all gland constituents is discussed.

We describe the developmental stages of these beetles from egg to adult and provide details of the functional morphology of the prey-capture apparatus including its adhesion performance via viscous forces.

Steninae beetles prefer moist habitats and inhabit waterside environments such as reeds or sparsely vegetated sites on river or lake margins or the litter and humus layer in tropical forests. More than 70 distinct behavioural patterns can be assigned to the functional categories of feeding, reproduction, grooming, resting and protection. The ecomorphology of Steninae is reviewed in terms of their compound eyes, the labial prey-capture apparatus including the sticky pads (paraglossae) at its tip, the legs including the tarsi and the abdominal tergites.



Our own work that was included in this chapter was supported by the Deutsche Forschungsgemeinschaft to O.B. and K.D. (PAK 478: BE 2233/10-1, BE 2233/11-1, DE 258/12-1, SE 595/14-1) and the Bundesministerium für Bildung und Forschung (Bionics Competition, BNK2-052) to O.B. We thank K. H. Seifert (Bayreuth) for support in identifying and synthesizing Steninae alkaloids. We thank Volker Puthz for critical reading of the manuscript and continuous support of our research. The English was corrected by Theresa Jones. Monika Meinert helped with the SEM work.


  1. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. Wiley-VCH, New YorkGoogle Scholar
  2. Anderson R (1984) Staphylinidae (Coleoptera) in Ireland-3: Steninae. Irish Nat J 21(6):242–251Google Scholar
  3. Bauer T, Pfeiffer M (1991) ‘Shooting’ springtails with a sticky rod: the flexible hunting behaviour of Stenus comma (Coleoptera; Staphylinidae) and the counter-strategies of its prey. Anim Behav 41:819–828Google Scholar
  4. Bauer T, Desender K, Morwinsky T, Betz O (1998) Eye morphology reflects habitat demands in three closely related ground beetle species (Coleoptera: Carabidae). J Zool 245:467–472Google Scholar
  5. Benfield EF (1972) Defensive secretion of Dineutes discolor (Coleoptera: Gyrinidae). Ann Entomol Soc Am 65:1324–1327Google Scholar
  6. Benick L (1922) Paarungsvorgang bei Stenus-Arten. Entomol Bl 18:94Google Scholar
  7. Benick L (1929) Steninae (Staphyl.). In: Bestimmungstabellen europäischer Coleoptera, Bd. 96. Karl Skrobanek & Söhne, Troppau, pp 5–10Google Scholar
  8. Betz O (1994) Der Fangapparat bei Stenus spp. (Coleoptera, Staphylinidae): Bau, Funktion, Evolution. Dissertation, Universität BayreuthGoogle Scholar
  9. Betz O (1996) Function and evolution of the adhesion-capture apparatus of Stenus species (Coleoptera, Staphylinidae). Zoomorphology 116:15–34Google Scholar
  10. Betz O (1998a) Comparative studies on the predatory behaviour of Stenus spp. (Coleoptera: Staphylinidae): the significance of its specialized labial apparatus. J Zool 244:527–544Google Scholar
  11. Betz O (1998b) Life forms and hunting behaviour of some central European Stenus species (Coleoptera, Staphylinidae). Appl Soil Ecol 9:69–74Google Scholar
  12. Betz O (1999) A behavioural inventory of adult Stenus species (Coleoptera: Staphylinidae). J Nat Hist 33:1691–1712Google Scholar
  13. Betz O (2000) Zum Anpassungswert unterschiedlicher Tarsusformen bei Stenus spp. (Coleoptera, Staphylinidae). Verh Westdeut Entomol 1998:127–133Google Scholar
  14. Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113PubMedGoogle Scholar
  15. Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morphol 255:24–43PubMedGoogle Scholar
  16. Betz O (2006) Der Anpassungswert morphologischer Strukturen: Integration von Form, Funktion und Ökologie am Beispiel der Kurzflügelkäfer-Gattung Stenus (Coleoptera, Staphylinidae). Entomol Heute 18:3–26Google Scholar
  17. Betz O (2010) Adhesive exocrine glands in insects: morphology, ultrastructure, and adhesive secretion. In: von Byern J, Grunwald I (eds) Biological adhesive systems. From nature to technical and medical application. Springer, Berlin, pp 111–152Google Scholar
  18. Betz O, Fuhrmann S (2001) Life history traits in different life forms of predaceous Stenus beetles (Coleoptera, Staphylinidae), living in waterside environments. Neth J Zool 51(4):371–393Google Scholar
  19. Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33:3–30PubMedPubMedCentralGoogle Scholar
  20. Betz O, Koerner L, Gorb S (2009) An insect’s tongue as the model for two-phase viscous adhesives? adhes Adhes Sealants 3:32–35Google Scholar
  21. Beutel RG, Molenda R (1997) Comparative morphology of selected larvae of Staphylinoidea (Coleoptera, Polyphaga) with phylogenetic implications. Zool Anz 236:37–67Google Scholar
  22. Billard G, Bruyant G (1905) Sur un mode particulier de locomotion de certains Stenus. C R Soc Biol 59:102–103Google Scholar
  23. Blair KG (1917) A note on the biology of Stenus similis Herbst. Ent Mon Mag 53:175Google Scholar
  24. Blum P (1979) Zur Phylogenie und ökologischen Bedeutung der Elytrenreduktion und Abdomenbeweglichkeit der Staphylinidae (Coleoptera). Vergleichend- und funktionsmorphologische Untersuchungen. Zool Jahrb Abt Anat Ontog Tiere 102(8):533–582Google Scholar
  25. Blum MS (1981) Chemical defenses of arthropods. Academic Press, New YorkGoogle Scholar
  26. Breitmaier E (2008) Alkaloide, 3. Aufl. Vieweg & Teubner, WiesbadenGoogle Scholar
  27. Burkhardt D, de la Motte I (1983) How stalk-eyed flies eye stalk-eyed flies: observations and measurements of the eyes of Cyrtodiopsis whitei (Dopsidae, Diptera). J Comp Physiol 151:407–421Google Scholar
  28. Burse A, Boland W (2015) RNAi based functional analysis of biosynthetic enzymes and transport proteins involved in the chemical defense of juvenile leaf beetles. In: Hoffmann KH (ed) Insect molecular biology and ecology. CRC Press, Boca Raton, pp 351–375Google Scholar
  29. Bush JWM, Hu DL (2006) Walking on water: biolocomotion at the interface. Annu Rev Fluid Mech 38:339–369Google Scholar
  30. Cai CY, Clarke DJ, Huang DY, Nel A (2014) A new genus and species of Steninae from the late Eocene of France (Coleoptera, Staphylinidae). Alcheringa 38:557–562Google Scholar
  31. Cameron M (1930) The Fauna of British India including Ceylon and Burma. Coleoptera: Staphylinidae, Vol. 1 (Micropeplinae, Oxytelinae, Oxyporinae, Steninae and Euaesthetinae). Taylor & Francis, LondonGoogle Scholar
  32. Caron E, Ribeiro-Costa CS, Newton AF (2008) New position of an abdominal defensive gland complex in Staphylinidae (Coleoptera) with redescription of Piestus heterocephalus Fauvel, 1902 (Piestinae). Zootaxa 1895:1–9Google Scholar
  33. Champion GC (1919) The genus Dianous Samouelle, as represented in India and China (Coleoptera). Ent Mon Mag 55:41–55Google Scholar
  34. Chatzimanolis S (2018) A review of the fossil history of Staphylinoidea. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae) – life history, evolution, ecology and distribution. Springer International Publishing, Cham, pp 27–45Google Scholar
  35. Clarke D, Chatzimanolis S (2009) Antiquity and long-term morphological stasis in a group of rove beetles (Coleoptera: Staphylinidae): description of the oldest Octavius species, from cretaceous Burmese amber and review of the ‘Euaesthetine subgroup’ fossil record. Cretac Res 30(6):1426–1434Google Scholar
  36. Clarke DJ, Grebennikov VV (2009) Monophyly of Euaesthetinae (Coleoptera: Staphylinidae): phylogenetic evidence from adults and larvae, review of austral genera, and new larval descriptions. Syst Entomol 34:346–397Google Scholar
  37. Connert J (1974) Zur Strukturaufklärung des Stenusins. Dissertation, University of HeidelbergGoogle Scholar
  38. Cuccodoro G (2017) Review of the observations of aggregates of Steninae reported since 1856 (Coleoptera Staphylinidae). Biodiv J 8(1):123–144Google Scholar
  39. Delahon P (1927) Kleine Mitteilung. Ent Bl 23(2):90Google Scholar
  40. Deml R, Dettner K (1995) “Ballon hairs” of gipsy moth larvae (Lep., Lymantriidae): morphology and comparative chemistry. Comp Biochem Physiol 112B:673–681Google Scholar
  41. Deml R, Dettner K (1997) Chemical defence of emperor moths and tussock moths (Lepidoptera: Saturniidae, Lymantriidae). Entomol Gen 21:225–251Google Scholar
  42. Dettner K (1985) Ecological and phylogenetic significance of defensive compounds from pygidial glands of Hydradephaga (Coleoptera). Proc Acad Natl Sci Phila 137:156–171Google Scholar
  43. Dettner K (1987) Chemosystematics and evolution of beetle chemical defense. Annu Rev Entomol 32:17–48Google Scholar
  44. Dettner K (1991) Chemische Abwehrmechanismen bei Kurzflüglern (Coleoptera: Staphylinidae). Jber natwiss Ver Wuppertal 44:50–58Google Scholar
  45. Dettner K (1993) Defensive secretions and exocrine glands in free-living staphylinid beetles and their bearing on phylogeny (Coleoptera: Staphylinidae). Biochem Syst Ecol 21:143–162Google Scholar
  46. Dettner K (2007) Gifte und Pharmaka aus Insekten-Ihre Herkunft, Wirkung und ökologische Bedeutung. Entomol Heute 19:3–28Google Scholar
  47. Dettner K (2014) Chemical ecology and biochemistry of Dytiscidae. In: Yee DA (ed) Ecology, systematics, and the natural history of predaceous diving beetles (Coleoptera: Dytiscidae). Springer, New York, pp 235–306Google Scholar
  48. Dettner K, Scheuerlein A, Fabian P, Schulz S, Francke W (1996) Chemical defense of giant springtail Tetrodontophora bielanensis (Waga) (Insecta: Collembola). J Chem Ecol 22:1051–1074PubMedGoogle Scholar
  49. Dietz AA, Hofmann MJ, Motschmann H (2016) The role of surface viscosity in the escape mechanism of the Stenus beetle. J Phys Chem B 120(29):7143–7147PubMedGoogle Scholar
  50. Eisner T, Aneshansley DJ (2000) Chemical defense: aquatic beetle (Dineutes hornii) vs fish (Micropterus salmonides). Proc Natl Acad Sci U S A 97:11313–11318PubMedPubMedCentralGoogle Scholar
  51. Eisner T, Meinwald J, Monro A, Ghent R (1961) Defense mechanisms of arthropods – I. The composition and function of the spray of the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Pedipalpida). J Insect Physiol 6:272–298Google Scholar
  52. Eisner T, McHenry F, Salpeter MM (1964) Defense mechanisms of arthropods XV. Morphology of the quinine-producing glands of a tenebrionid beetle (Eleodes longicollis Lec.) J Morphol 115:355–400PubMedGoogle Scholar
  53. Ekpa O, Wheeler JH, Cokendolpher JC, Duffield RM (1984) N,N-dimethyl-β-phenylethylamine and bornyl esters from the harvestman Sclerobunus robustus (Arachnida: Opiliones). Tetrahedron Lett 25:1315–1318Google Scholar
  54. Francke W, Dettner K (2005) Chemical signalling in beetles. In: Schulz S (ed) Topics in current chemistry, vol 240. Springer, Heidelberg, pp 85–166Google Scholar
  55. Frank JH (1991) Staphylinidae (Staphylinoidea). In: Stehr FW (ed) Immature insects, vol 2. Kendall/Hunt, Dubuque, IA, pp 341–352Google Scholar
  56. Frank JH (2018) A worldwide checklist of parasites of Staphylinidae. In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae) – life history, evolution, ecology and distribution. Springer International Publishing, Cham, pp 183–225Google Scholar
  57. Frank JH, Thomas MC (1984) Cocoon-spinning and the defensive function of the median gland in larvae of Aleocharinae (Coleoptera, Staphylinidae): a review. Quaest Entomol 20(1):7–24Google Scholar
  58. Frédérich B, Sorenson L, Santini F, Slater GJ, Alfaro ME (2013) Iterative ecological radiation and convergence during the evolutionary history of damselfishes (Pomacentridae). Am Nat 181:94–113PubMedGoogle Scholar
  59. Frey H (1973) Das Aquarium von A bis Z. Verlag J. Neumann-Neudamm, MelsungenGoogle Scholar
  60. Grebennikov VV, Newton AF (2009) Good-bye Scydmaenidae, or why the antlike stone beetles should become megadiverse Staphylinidae sensu latissimo (Coleoptera). Eur J Entomol 106:275–301Google Scholar
  61. Hammond PM (1975) The Steninae (Coleoptera, Staphylinidae) of south-western Africa with special reference to the arid and semi-arid zones. Cimbebasia (A) 4(1):1–33Google Scholar
  62. Hansen M (1997) Phylogeny and classification of the staphyliniform beetle families (Coleoptera). Biol Skr 48:1–339Google Scholar
  63. Heethoff M, Koerner L, Norton RA, Raspotnig G (2011) Tasty but protected – first evidence of chemical defense in oribatid mites. J Chem Ecol 37:1037–1043PubMedGoogle Scholar
  64. Hermann LH (2001) Catalogue of the Staphylinidae (Insecta: Coleoptera): 1758 to the end of the second millennium. I. Introduction, history, biographical sketches and omaliine group and IV. Staphylinidae group (part 1). Bull Am Mus Nat Hist 265:1–650, 1807, 2440Google Scholar
  65. Hesse M (2000) Alkaloide, Fluch oder Segen der Natur. Wiley-VCH, WeinheimGoogle Scholar
  66. Honda K (1983) Defensive potential of components of the larval osmeterial secretion of papilionid butterflies against ants. Physiol Entomol 8:173–179Google Scholar
  67. Horion A (1963) Faunistik der mitteleuropäischen Käfer. Band IX. Staphylinidae. 1. Teil Micropeplinae bis Euaesthetinae. Kommissionsverlag Buchdruckerei August Feyel, Überlingen-BodenseeGoogle Scholar
  68. Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Soc London Ser B 285:1–59Google Scholar
  69. Huth A, Dettner K (1990) Defense chemical from abdominal glands of 13 rove beetle species of subtribe Staphylinina (Coleoptera: Staphylinidae, Staphylininae). J Chem Ecol 16:2691–2711PubMedGoogle Scholar
  70. Jałoszyński P, Peris D (2016) Cretaceous amber inclusions of Spain and Myanmar demonstrate early diversification and wide dispersal of Cephenniitae (Coleoptera: Staphylinidae: Scydmaeninae). Cretac Res 57:190–198Google Scholar
  71. Jałoszyński P, Yamamoto S, Takahashi Y (2016) Scydmobisetia gen. nov., the first definite Glandulariini from upper cretaceous Burmese amber (Coleoptera: Staphylinidae: Scydmaeninae). Cretac Res 65:59–67Google Scholar
  72. Jenkins MF (1957) The morphology and anatomy of the pygidial glands of Dianous coerulescens Gyllenhal (Coleoptera: Staphylinidae). Proc R Entomol Soc Lond 32:159–169Google Scholar
  73. Jenkins MF (1958) Cocoon building and the production of silk by the mature larva of Dianous coerulescens Gyllenhal (Coleoptera: Staphylinidae). Trans R Entomol Soc Lond 110:287–301Google Scholar
  74. Jenkins MF (1960) On the method by which Stenus and Dianous (Coleoptera: Staphylinidae) return to the banks of a pool. Trans R Entomol Soc Lond 112:1–14Google Scholar
  75. Kanehisa K, Tsumuki H (1996) Pygidial secretion of Stenus rove beetles (Coleoptera: Staphylinidae). Bull Res Inst Bioresour Okayama Univ 4:25–31Google Scholar
  76. Kasule FK (1966) The subfamilies of the larvae of Staphylinidae (Coleoptera) with keys to the larvae of the British genera of Steninae and Proteininae. Trans R Entomol Soc Lond 118:261–283Google Scholar
  77. Koch K (1989) Die Käfer Mitteleuropas. Ökologie Band 1. Goecke & Evers, KrefeldGoogle Scholar
  78. Kölsch G (2000) The ultrastructure of glands and the production and function of the secretion in the adhesive capture apparatus of Stenus species (Coleoptera: Staphylinidae). Can J Zool 78:465–475Google Scholar
  79. Kölsch G, Betz O (1998) Ultrastructure and function of the adhesion-capture apparatus of Stenus species (Coleoptera, Staphylinidae). Zoomorphology 118:263–272Google Scholar
  80. Koerner L, Gorb SN, Betz O (2012a) Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces. J Insect Physiol 58:155–163PubMedGoogle Scholar
  81. Koerner L, Gorb SN, Betz O (2012b) Adhesive performance and functional morphology of the stick-capture apparatus of the rove beetles Stenus spp. (Coleoptera, Staphylinidae). Zoology 115:117–127PubMedGoogle Scholar
  82. Koerner L, Laumann M, Betz O, Heethoff M (2013) Loss of the sticky harpoon – COI sequences indicate paraphyly of Stenus with respect to Dianous (Staphylinidae, Steninae). Zool Anz 252:337–347Google Scholar
  83. Koerner L, Braun V, Betz O (2016) The labial adhesive pads of rove beetles of the genus Stenus (Coleoptera: Staphylinidae) as carriers of bacteria. Entomol Gen 36:33–41Google Scholar
  84. Koerner L, Garamszegi L, Heethoff M, Betz O (2017) Divergent morphologies of adhesive predatory mouthparts of Stenus species (Coleoptera, Staphylinidae) explain differences in adhesive performance and resulting prey-capture success. Zool J Linenean Soc 181(3):500–518Google Scholar
  85. Kohler P (1979) Die absolute Konfiguration des Stenusins und die Aufklärung weiterer Inhaltsstoffe des Spreitungsschwimmers S. comma. Dissertation, University of HeidelbergGoogle Scholar
  86. Kovac D, Maschwitz U (1989) Secretion-grooming in the water bug Plea minutissima: chemical defense against microorganisms interfering with the hydrofuge properties in the respiratory region. Ecol Entomol 14:403–411Google Scholar
  87. Kovac D, Maschwitz U (1990) Secretion-grooming in aquatic beetles (Hydradephaga): a chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1:131–138Google Scholar
  88. Lang C (2014) Die chemische Ökologie der Steninae (Coleoptera: Staphylinidae) mit einem Beitrag zur molekularen Phylogenie. Inauguraldissertation, Lehrstuhl Tierökologie II, Universität Bayreuth, 98 pp. urn:nbn:de:bvb:703-epub-2022-5Google Scholar
  89. Lang C, Seifert K, Dettner K (2012) Skimming behaviour and spreading potential of Stenus species and Dianous coerulescens (Coleoptera: Staphylinidae). Naturwissenschaften 99(11):937–947PubMedGoogle Scholar
  90. Lang C, Koerner L, Betz O, Puthz V, Dettner K (2015) Phylogenetic relationships and chemical evolution of the genera Stenus and Dianous (Coleoptera: Staphylinidae). Chemoecology 25:11–24Google Scholar
  91. Larsen EB (1959) Traæk af steninernes biologi. XI. Not Entomol 39:87–88Google Scholar
  92. Larsen EB (1963) Bidrag til Steninernes biologi (Col.) Entomol Medd 32:37–39Google Scholar
  93. Latreille PA (1797) Précis des caractères généraux des insectes disposés dans un ordre naturel. Brive 1797:77–78Google Scholar
  94. Lawrence J, Newton AF (1982) Evolution and classification of beetles. Annu Rev Ecol Syst 13:261–290Google Scholar
  95. Lecoq J-C (1991) Observation d’un comportement rare chez un staphylin: le grégarisme (Col. Staphylinidae). L’Entomologiste 47(3):173–174Google Scholar
  96. Leschen RAB, Newton AF (2003) Larval description, adult feeding behavior, and phylogenetic placement of Megalopinus (Coleoptera: Staphylinidae). Coleopt Bull 57:469–493Google Scholar
  97. Li Y, Zheng F (2005) Studies on the predatory functional response and searching efficiency of Stenus (Stenus, s. str.) sp.1 on Lipaphis erysimi Kaltenbach. J Shenyang Norm Univ (Nat Sci) 23(2):200–203Google Scholar
  98. Linsenmair KE (1963) Eine bislang unbekannte Fortbewegungsart bei Insekten: Das Entspannungsschwimmen. Kosmos, pp 331–334Google Scholar
  99. Linsenmair KE, Jander R (1963) Das Entspannungsschwimmen von Velia und Stenus. Naturwissenschaften 50:231Google Scholar
  100. Lohse GA (1964) Staphylinidae I (Micropeplinae bis Tachyporinae). In: Freude H, Harde KW, Lohse GA (eds) Die Käfer Mitteleuropas, vol 4. Goecke & Evers, KrefeldGoogle Scholar
  101. Lott DA, Anderson R (2011) Handbooks for the identification of British insects, Vol. 12, part 7. The Staphylinidae (rove beetles) of Britain and Ireland; Parts 7 and 8: Oxyporinae, Steninae, Euaesthetinae, Pseudopsinae, Paederinae, Staphylininae. Royal Entomological Society, St AlbansGoogle Scholar
  102. Lusebrink I (2007). Stereoisomerie, Biosynthese und biologische Wirkung des Stenusins sowie weitere Inhaltsstoffe der Pygidialdrüsen der Kurzflüglergattung Stenus (Staphylinidae, Coleoptera). Dissertation, University of BayreuthGoogle Scholar
  103. Lusebrink I, Burkhardt D, Gedig T, Dettner K, Seifert K, Mosandl A (2007) Intrageneric differences in the four stereoisomers of stenusine in the rove beetle genus, Stenus (Coleoptera: Staphylinidae). Naturwissenschaften 94:143–147PubMedGoogle Scholar
  104. Lusebrink I, Dettner K, Seifert K (2008a) Biosynthesis of Stenusine. J Nat Prod 71:743–745PubMedGoogle Scholar
  105. Lusebrink I, Dettner K, Seifert K (2008b) Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae). Naturwissenschaften 95:751–755PubMedGoogle Scholar
  106. Lusebrink I, Dettner K, Schierling A, Müller T, Daolio C, Schneider B, Schmidt J, Seifert K (2009) New pyridine alkaloids from rove beetles of the genus Stenus (Coleoptera: Staphylinidae). Z NatForsch 64c:271–278Google Scholar
  107. MacConnel JG, Blum MS, Fales HM (1971) The chemistry of fire ant venom. Tetrahedron 26:1129–1139Google Scholar
  108. Maschwitz U (1967) Eine neuartige Form der Abwehr von Mikroorganismen bei Insekten. Naturwissenschaften 54:649PubMedGoogle Scholar
  109. McKenna DD, Farrell BD, Caterino MS, Farnum CW, Hawks DC, Maddison DR, Seago AE, Short AEZ, Newton AF, Thayer MK (2015) Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Syst Entomol 40:35–60Google Scholar
  110. Meinert F (1884) Tungens Udskydelighed hos Steninerne, en Slægt of Staphylinernes Familie. Vid Medd Dansk naturhist Foren, pp 180–207Google Scholar
  111. Meinert F (1887) Die Unterlippe der Käfergattung Stenus. Zool Anz 10:136–139Google Scholar
  112. Morgan ED (2010) Biosynthesis in insects, adv edn. Cambridge, RSCGoogle Scholar
  113. Mori K (1999) Miscellaneous natural products including marine natural products, pheromones, plant hormones and aspects of ecology. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural product chemistry, vol 8. Elsevier, OxfordGoogle Scholar
  114. Motschulsky V (1857) Enumération des nouvelles espèces de Coléoptères, IV Staphylinides. Bull Soc Imp Nat Mosc 30:490–517Google Scholar
  115. Motschulsky V (1860) Énumération des nouvelles espèces de Coléoptères rappartiées de ses voyages. Bull Soc Nat Mosc 33:539–588Google Scholar
  116. Müller T, Göhl M, Lusebrink I, Dettner K, Seifert K (2012) Cicindeloine from Stenus cicindeloides – isolation, structure elucidation and total synthesis. Eur J Org Chem 12:2323–2330Google Scholar
  117. Naomi S-I (2018) Structures and functions of the endophallic copulatory tube in the family Staphylinidae (Insecta: Coleoptera). In: Betz O, Irmler U, Klimaszewski J (eds) Biology of rove beetles (Staphylinidae) – life history, evolution, ecology and distribution. Springer International Publishing, Cham, pp 299–319Google Scholar
  118. Naomi S-I, Nomura S, Puthz V (2017) The subfamily Steninae MacLeay, 1825 (Coleoptera: Staphylinidae) of Japan. Part 1. Dianous and Stenus (S. comma group to S. guttalis group). Natl Mus Nat Sci Monogr 46:1–339Google Scholar
  119. Neumann S (1993) Die Analdrüsen der Spreitungsschwimmer (Coleoptera: Staphylinidae). Diploma thesis, University of BayreuthGoogle Scholar
  120. Newton AF Jr (1990) Insecta: Coleoptera: Staphylinidae adults and larvae. In: Dindal DL (ed) Soil biology guide. Wiley, New York, pp 1137–1174Google Scholar
  121. Newton AF, Thayer MK, Ashe JS, Chandler DS (2001) Staphylinidae Latreille, 1802. In: Arnett RH Jr, Thomas MC (eds) American beetles. CRC Press, Boca Raton, pp 272–418Google Scholar
  122. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19:61–80Google Scholar
  123. Noirot C, Quennedey A (1991) Glands, gland cells, glandular units: some comments on terminology and classification. Ann Soc Entomol Fr 27:123–128Google Scholar
  124. O’Brien WJ, Evans BI, Browman HI (1989) Flexible search tactics and efficient foraging in saltatory searching animals. Oecologia 80:100–110Google Scholar
  125. Piffard A (1901) Steni gliding on the surface of water. Ent Mon Mag 12:99Google Scholar
  126. Puthz V (1971) Revision der afrikanischen Steninenfauna und Allgemeines über die Gattung Stenus Latreille (Coleoptera Staphylinidae) (56. Beitrag zur Kenntnis der Steninen). Ann R Mus Afr Centr Ser 8(187):1–376Google Scholar
  127. Puthz V (1974) Neue mexikanische Stenus-Arten: 135. Beitrag zur Kenntnis der Steninen (Coleoptera, Staphylinidae). Dtsch Entomol Z 21:203–216Google Scholar
  128. Puthz V (1980) Die Stenus- Arten (Stenus + Nestus REY) der Orientalis: Bestimmungstabelle und Neubeschreibungen (Coleoptera, Staphylinidae) 178. Beitrag zur Kenntnis der Steninen. Reichenbachia 18:23–41Google Scholar
  129. Puthz V (1981) Was ist Dianous Leach, 1819, was ist Stenus Latreille, 1796? Oder: Die Aporie des Stenologen und ihre taxonomischen Konsequenzen (Coleoptera, Staphylinidae). Ent Abh St Mus Tierk, Dresden 44:87–132Google Scholar
  130. Puthz V (1998) Die Gattung Stenus Latreille in Vietnam (Coleoptera, Staphylinidae). Rev Suisse Zool 105:383–394Google Scholar
  131. Puthz V (2000a) Beiträge zur Kenntnis der Steninen CCLXII Neue und alte neotropische Arten der Gattung Stenus Latreille (Staphylinidae, Coleoptera). Philippia 9:165–213Google Scholar
  132. Puthz V (2000b) The genus Dianous Leach in China (Coleoptera: Staphylinidae) 261. Contribution to the knowledge of Steninae. Rev Suisse Zool 107:419–559Google Scholar
  133. Puthz V (2001) Beiträge zur Kenntnis der Steninen CCLXIX Zur Ordnung in der Gattung Stenus LATREILLE (Staphylinidae, Coleoptera). Philippia 10:53–64Google Scholar
  134. Puthz V (2005a) Notes on Chinese Dianous Leach (Coleoptera, Staphylinidae). Entomol Rev Jpn 60:137–152Google Scholar
  135. Puthz V (2005b) Neue und alte neotropische Stenus (Hemistenus-) Arten (Coleoptera: Staphylinidae). Mitt Int Entomol Ver Suppl XI:1–60Google Scholar
  136. Puthz V (2006) Revision der neotropischen Stenus (Tesnus) Arten (Coleoptera: Staphylinidae) 288. Beitrag zur Kenntnis der Steninen. Rev Suisse Zool 113:617–674Google Scholar
  137. Puthz V (2008) Stenus Latreille und die segenreiche Himmelstochter (Coleoptera, Staphylinidae). Linz Biol Beitr 40(1):137–230Google Scholar
  138. Puthz V (2010) Stenus Latreille, 1797 aus dem Baltischen Bernstein nebst Bemerkungen über andere fossile Stenus-Arten (Coleoptera, Staphylinidae). Ent Bl 106:265–287Google Scholar
  139. Puthz V (2012) Steninae. In: Freude H, Harde KW, Lohse A (eds) Die Käfer Mitteleuropas. Band 4, Zweite Auflage, pp 286–317Google Scholar
  140. Puthz V (2013) Übersicht über die orientalischen Arten der Gattung Stenus Latreille 1797 (Coleoptera, Staphylinidae) 330. Beitrag zur Kenntnis der Steninen. Linz Biol Beitr 45(2):1279–1470Google Scholar
  141. Puthz V (2015) Übersicht über die Arten der Gattung Dianous LEACH group I (Coleoptera, Staphylinidae) 345. Beitrag zur Kenntnis der Steninen. Linz Biol Beitr 47(2):1747–1783Google Scholar
  142. Puthz V (2016) Übersicht über die Arten der Gattung Dianous Leach group II (Coleoptera, Staphylinidae) 347. Beitrag zur Kenntnis der Steninen. Linz Biol Beitr 48(1):705–778Google Scholar
  143. Puthz V (2017) Übersicht über die neotropischen Arten der Gattung Stenus Latreille mit seitlich ungerandetem Abdomen und gelappten Tarsen (Coleoptera, Staphylinidae) 351. Beitrag zur Kenntnis der Steninen. Linz Biol Beitr 49(1):749–883Google Scholar
  144. Quennedey A (1998) Insect epidermal gland cells: ultrastructure and morphogenesis. In: Harrison FW, Locke M (eds) Microscopic anatomy of invertebrates, vol 11A. Wiley-Liss, London, pp 177–207Google Scholar
  145. Quennedey A, Drugmand D, Deligne J (2002) Morphology and ultrastructure of paired prototergal glands in the adult rove beetle Philonthus varians (Coleoptera, Staphylinidae). Arthropod Struct Dev 31:173–183PubMedGoogle Scholar
  146. Qui G-H, Zheng F-K (2006) Effects of three insecticides on predation function of (Stenus sp.) J Shenyang Norm Univ (Nat Sci Edn) 24(1):84–87Google Scholar
  147. Renkonen O (1934) Über das Vorkommen der Stenus-Arten (Col. Staph.) an verschiedenen Wohnorten in Finnland. Ann Zool Soc Zool Bot Fenn Vanamo 1(4):1–33Google Scholar
  148. Renkonen O (1950) Zur Autökologie einiger Stenus-Arten im Lichte synökologischer Betrachtungen. In: 8th International congress of entomology, pp 1–6Google Scholar
  149. Rey C (1884) Tribu des Brévipennes. Deuxième groupe: Micropéplides. Troisième groupe: Sténides. Annls Soc Linn Lyon 30:153–415Google Scholar
  150. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedGoogle Scholar
  151. Rostás M, Blassmann K (2009) Insects had it first: surfactants as a defence against predators. Proc R Soc B 276:633–638PubMedGoogle Scholar
  152. de Rougemont GM (1983) More stenine beetles from Thailand (Coleoptera, Staphylinidae). Nat Hist Bull Siam Soc 31(1):9–54Google Scholar
  153. de Rougemont GM (1985) In the footsteps of H. G. Champion: new Dianous species from the Himalaya (Coleoptera, Staphylinidae). Entomol Basiliensia 10:123–144Google Scholar
  154. Rupprecht J (2011) Biologische Aktivität ausgewählter Abwehrstoffe von Stenus-Kurzflügelkäfern (Coleoptera, Staphylinidae) gegen Schwertträger der Art Xiphophorus helleri (Poeciliidae) und den Pilz Verticillium lecanii. Bachelor thesis, University of BayreuthGoogle Scholar
  155. Ryvkin AB (1988) New cretaceous Staphylinidae (Insecta) from the Far East. Paleontol J 22(4):100–104Google Scholar
  156. Ryvkin AB (2012) New species and records of Stenus (Nestus) of the canaliculatus group, with the erection of a new species group (Insecta: Coleoptera: Staphylinidae: Steninae). Eur J Taxon 13:1–62Google Scholar
  157. Schatz I, Steinberger K-H, Kopf T (2003) Auswirkungen des Schwellbetriebes auf uferbewohnende Arthropoden (Aranei; Insecta: Coleoptera: Carabidae, Staphylinidae) am Inn im Vergleich zum Lech (Tirol, Österreich). Natur in Tirol. Naturkundliche Beiträge der Abteilung Umweltschutz. Ökologie und Wasserkraftnutzung. Raggl, Innsbruck, pp 202–231Google Scholar
  158. Schierling A (2013) Die chemische Ökologie von Kurzflügelkäfern der Gattungen Dianous und Stenus (Coleoptera, Staphylinidae). Dissertation, University of BayreuthGoogle Scholar
  159. Schierling A, Dettner K (2013) The pygidial defense gland system of the Steninae (Coleoptera, Staphylinidae): morphology, ultrastructure and evolution. Arthropod Struct Dev 42:197–208PubMedGoogle Scholar
  160. Schierling A, Schott M, Dettner K, Seifert K (2011) Biosynthesis of the defensive alkaloid (Z)-3-(2-Methyl-1-butenyl)-pyridine in Stenus similis beetles. J Nat Prod 74:2231–2234PubMedGoogle Scholar
  161. Schierling A, Dettner K, Schmidt J, Seifert K (2012) Biosynthesis of the defensive alkaloid cicindeloine in Stenus solutus beetles. Naturwissenschaften 99:665–669PubMedGoogle Scholar
  162. Schierling A, Seifert K, Sinterhauf SR, Rieß JB, Rupprecht JC, Dettner K (2013) The multifunctional pygidial gland secretion of the Steninae (Coleoptera: Staphylinidae): ecological significance and evolution. Chemoecology 23:45–57Google Scholar
  163. Schildknecht H (1970) The defensive chemistry of land and water beetles. Angew Chem 9:1–9Google Scholar
  164. Schildknecht H (1976) Chemical ecology – a chapter of modern natural products chemistry. Angew Chem 15:214–222Google Scholar
  165. Schildknecht H, Weis KH (1962) Zur Kenntnis der Pygidialblasensubstanzen vom Gelbrandkäfer (Dytiscus marginalis L.) XIII. Mitteilung über Insektenabwehrstoffe. Z NatForsch 17B:448–452Google Scholar
  166. Schildknecht H, Maschwitz E, Maschwitz U (1968) Die Explosionschemie der Bombardierkäfer: Struktur und Eigenschaften der Brennkammerenzyme. Z NatForsch 23B:1213Google Scholar
  167. Schildknecht H, Krauss D, Connert J, Essenbreis H, Orfanides N (1975) The spreading alkaloid stenusine from the staphylinid S. comma (Coleoptera: Staphylinidae). Angew Chem 14:427Google Scholar
  168. Schildknecht H, Berger D, Krauss D, Connert J, Gehlhaus J, Essenbreis H (1976) Defense chemistry of Stenus comma (Coleoptera: Staphylinidae). J Chem Ecol 2:1–11Google Scholar
  169. Schlüter T (1978) Zur Systematik und Palökologie harzkonservierter Arthropoda einer Taphozönose aus dem Cenomanium von NW-Frankreich. Berl Geowiss Abh Reihe A 9:1–150Google Scholar
  170. Schmitz G (1943) Le labium et les structures bucco-pharyngiennes du genre Stenus LATREILLE. Cellule 49:291–334Google Scholar
  171. Schomann AM, Solodovnikov A (2016) Phylogenetic placement of the austral rove beetle genus Hyperomma triggers changes in classification of Paederinae (Coleoptera: Staphylinidae). Zool Scr 46(3):336–347Google Scholar
  172. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect plant biology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  173. Schrüfer T (2013) Elektrophoretische Charakterisierung von Proteinen und Enzymen aus den Pygidialwehrdrüsen ausgewählter Steninae (Coleoptera, Staphylindae). Bachelor Thesis, University of BayreuthGoogle Scholar
  174. Schülke M, Smetana A (2015) Staphylinidae [Omaliinae – Scydmaeninae]. In: Löbl I, Löbl D (eds) Catalogue of Palearctic Coleoptera, vol 2/1. Brill, Leiden, pp 304–900Google Scholar
  175. Scriven L, Sternling C (1960) The Marangoni effect. Nature 187:186–188Google Scholar
  176. Serri S, Frisch J, von Rintelen T (2016) Genetic variability of two ecomorphological forms of Stenus Latreille, 1797 in Iran, with notes on the infrageneric classification of the genus (Coleoptera, Staphylinidae, Steninae). Zookeys 626:67–86Google Scholar
  177. Shi K, Zhou H-Z (2011) Taxonomy of the genus Dianous (Coleoptera: Staphylinidae: Steninae) in China and zoogeographic patterns of its distribution. Insect Sci 18:363–378Google Scholar
  178. Solodovnikov AY, Schomann A (2009) Revised systematics and biogeography of ‘Quediina’ of Subsaharan Africa: new phylogenetic insights into the rove beetle tribe Staphylinini (Coleoptera: Staphylinidae). Syst Entomol 34:443–446Google Scholar
  179. Solodovnikov A, Yue Y, Tarasov S, Ren D (2013) Extinct and extant rove beetles meet in the matrix: early cretaceous fossils shed light on the evolution of a hyperdiverse insect lineage (Coleoptera: Staphylinidae: Staphylininae). Cladistics 29:360–403Google Scholar
  180. Steidle J, Dettner K (1990) Die Tergaldrüse der Aleocharinae (Staphylinidae, Coleoptera): Chemie, Morphologie und phylogenetische Bedeutung. Mitt Dtsch Ges Allg Angew Entomol 7:541–545Google Scholar
  181. Stoeffler M, Maier TS, Tolasch T, Steidle JML (2007) Foreign language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae). J Chem Ecol 33:1382–1392PubMedGoogle Scholar
  182. Tang L, Li L-Z, Cao G-H (2011) On Chinese species of Dianous group I (Coleoptera, Staphylinidae Steninae). ZooKeys 111:67–85Google Scholar
  183. Thayer MK (2005) Staphylinidae. In: Beutel RG, Leschen RAB (eds) Handbook of zoology, Coleoptera, vol 1. De Gruyter, Berlin, pp 296–344Google Scholar
  184. Thayer MK (2016) 14. Staphylinoidea. 14.7. Staphylinidae Latreille, 1802. In: Beutel RG, Leschen RAB (eds) Handbook of zoology, Arthropoda: Insecta; Coleoptera, beetles: morphology and systematics; Archostemata, Adephaga, Myxophaga, Polyphaga partim, vol 1, 2nd edn. De Gruyter, Berlin, pp 394–442Google Scholar
  185. Thayer MK, Newton AF, Chatzimanolis S (2012) Prosolierius, a new mid-cretaceous genus of Solieriinae (Coleoptera: Staphylinidae) with three new species from Burmese amber. Cretac Res 34:124–134Google Scholar
  186. Urban C (1928) Stenus auf dem Wasser laufend. Ent Bl 24:45Google Scholar
  187. Voris R (1934) Biologic investigations on the Staphylinidae (Coleoptera). Trans Ac Sc St. Louis 28(8):232–261Google Scholar
  188. Vulinec K (1987) Swimming in whirligig beetles (Coleoptera: Staphylinidae): a possible role of the pygidial gland secretion. Coleopt Bull 41:151–153Google Scholar
  189. Weber H (1933) Lehrbuch der Entomologie. Gutsav Fischer, JenaGoogle Scholar
  190. Weinreich E (1968) Über den Klebfangapparat der Imagines von Stenus LATR. (Coleopt., Staphylinidae) mit einem Beitrag zur Kenntnis der Jugendstadien dieser Gattung. Z Morphol Ökol Tiere 62:162–210Google Scholar
  191. Welch RC (1966) A description of the pupa and third instar larva of Stenus canaliculatus Gyll. (Col., Staphylinidae). Ent Mon Mag 101:246–250Google Scholar
  192. Whitman DW, Blum MS, Alsop DW (1990) Allomones: chemicals for defense. In: Evans DL, Schmidt JO (eds) Insect Defenses. State University of New York Press, Albany, pp 289–351Google Scholar
  193. Wittmann I, Schierling A, Dettner K, Göhl M, Schmidt J, Seifert K (2015) Detection of a new piperideine alkaloid in the pygidial glands of some Stenus beetles. Chem Biodivers 12:1422–1434PubMedGoogle Scholar
  194. Wolf KL (1957) Physik und Chemie der Grenzflächen. Springer, BerlinGoogle Scholar
  195. Yamamoto S, Solodovnikov A (2016) The first fossil Megalopsidiinae (Coleoptera: Staphylinidae) from upper cretaceous Burmese amber and its potential for understanding basal relationships of rove beetles. Cretac Res 59:140–146Google Scholar
  196. Yang L-H (2003) Preliminary study on life habit of Stenus sp. (Stenus s. str.) J Sichuan Teach Coll (Nat Sci) 24(2):217–221Google Scholar
  197. Zhang X, Zhou H-Z (2013) How old are the rove beetles (Insecta: Coleoptera: Staphylinidae) and their lineages? Seeking an answer with DNA. Zool Sci 30(6):490–501Google Scholar
  198. Zhao CY, Zhou HZ (2004) Five new species of the subgenus Hemistenus (Coleoptera: Staphylinidae, Steninae) from China. Pan-Pac Entomol 80:93–108Google Scholar
  199. Żyła D, Yamamoto S, Wolf-Schwenninger K, Solodovnikov A (2017) Cretaceous origin of the unique prey-capture apparatus in megadiverse genus: stem lineage of Steninae rove beetles discovered in Burmese amber. Sci Rep 7:45904. Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  1. 1.Evolutionsbiologie der Invertebraten, Institut für Evolution und Ökologie, Universität TübingenTübingenGermany
  2. 2.Lehrstuhl Tierökologie II, Universität BayreuthBayreuthGermany

Personalised recommendations