Streamlining Structured Data Markup and Agile Modelling Methods

  • Ana-Maria Ghiran
  • Robert Andrei Buchmann
  • Cristina-Claudia Osman
  • Dimitris Karagiannis
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 305)

Abstract

Structured Data Markup allows Web developers to embed semantics in HTML pages, thus enabling clients (search engines, client apps etc.) to distil machine-readable resource descriptions from HTML code. This approach emerged from the Semantic Web paradigm as a powerful alternative to traditional Web scraping. Its enablers are dedicated HTML extensions (e.g., RDFa) and controlled vocabularies (e.g., Schema.org). Originating in a different context, Enterprise Modelling methods rely on diagrammatic means for describing and analysing an enterprise system in terms of key properties and conceptual abstractions. Hence, both the Semantic Web and Enterprise Modelling paradigms share a common interest in machine-processable semantics towards the goal of elevating semantics-awareness in information systems and decision support. Inspired by this overlapping, the paper proposes a mechanism for streamlining semantics between Structured Data Markup and enterprise modelling methods. Towards this goal, it employs the Resource Description Framework and the Agile Modelling Method Engineering Framework.

Keywords

Structured Data Markup Resource Description Framework Agile Modelling Method Engineering Schema.org ADOxx 

Notes

Acknowledgment

This work is supported by the Romanian National Research Authority through UEFISCDI, under grant agreement PN-III-P2-2.1-PED-2016-1140.

References

  1. 1.
  2. 2.
    W3C: Gleaning Resource Descriptions from Dialects of Languages (GRDDL) (2007). https://www.w3.org/TR/grddl/
  3. 3.
    Microformats.org (2017). http://microformats.org/wiki/about
  4. 4.
    Schema.org – official website (2011). http://schema.org/
  5. 5.
    W3C: Rich Structured Data Markup for Web Documents (2015). https://www.w3.org/TR/rdfa-primer/
  6. 6.
    W3C. RDF 1.1 – official website (2014). https://www.w3.org/TR/rdf11-concepts/
  7. 7.
    Frank, U.: Multi-perspective enterprise modeling (MEMO) – conceptual framework and modeling languages, In: Sprague Jr., R.H. (ed.) Proceedings of the 35th Hawaii International Conference on System Sciences, pp 1258–1267. IEEE (2002)Google Scholar
  8. 8.
    Bjeković, M., Proper, H.A., Sottet, J.-S.: Embracing pragmatics. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 431–444. Springer, Cham (2014). doi:10.1007/978-3-319-12206-9_37 Google Scholar
  9. 9.
    Jeusfeld, M.A.: SemCheck: checking constraints for multi-perspective modeling languages. In: Karagiannis, D., Mayr, H., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 31–53. Springer, Cham (2016). doi:10.1007/978-3-319-39417-6_2 CrossRefGoogle Scholar
  10. 10.
    Karagiannis, D., Buchmann, R.A., Bork, D.: Managing consistency in multi-view enterprise models: an approach based on semantic queries. In: Proceedings of ECIS 2016, Association for Information Systems, p. 53 (2016)Google Scholar
  11. 11.
    Karagiannis, D.: Agile modelling method engineering. In: Karanikolas, N., Akoumianakis, D., Mara, N., Vergados, D., Michalis, X. (eds.) Proceedings of the 19th Panhellenic Conference on Informatics, pp. 5–10. ACM (2015)Google Scholar
  12. 12.
    Frank, U.: Domain-specific modelling languages: requirements analysis and design guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Betin, J. (eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36654-3_6 CrossRefGoogle Scholar
  13. 13.
    Microformats.org: H-Card (2017). http://microformats.org/wiki/h-card
  14. 14.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.99 (2014). http://xmlns.com/foaf/spec/
  15. 15.
    Hepp, M.: GoodRelations: an ontology for describing products and services offers on the web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS, vol. 5268, pp. 329–346. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87696-0_29. http://www.heppnetz.de/projects/goodrelations/ CrossRefGoogle Scholar
  16. 16.
    W3C: Terse RDF Triple Language (2014). https://www.w3.org/TR/turtle/
  17. 17.
    W3C: SPARQL 1.1 Query Language (2013). https://www.w3.org/TR/sparql11-query/
  18. 18.
    W3C: RDFa 1.1 Distiller (2013). https://www.w3.org/2012/pyRdfa/Overview.html
  19. 19.
    Wood, D. (ed.): Linking Enterprise Data. Springer Science & Business Media, Heidelberg (2010)Google Scholar
  20. 20.
    EnterKnow project (2017). http://enterknow.granturi.ubbcluj.ro/
  21. 21.
    BOC-Group: ADOxx tool (2017). https://www.adoxx.org/live/home
  22. 22.
    Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 182. Springer, Heidelberg (2002). doi:10.1007/3-540-45705-4_19 CrossRefGoogle Scholar
  23. 23.
    The Open Models Initiative Laboratory (2017). http://www.omilab.org/psm/home
  24. 24.
    Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.): Domain-Specific Conceptual Modelling. Springer, Heidelberg (2016)Google Scholar
  25. 25.
    Karagiannis, D., Buchmann, R.A.: Linked open models: extending linked open data with conceptual model information. Inf. Syst. 56, 174–197 (2016)CrossRefGoogle Scholar
  26. 26.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.): Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley-Interscience, New York (2005)Google Scholar
  27. 27.
    Buchmann, R.A., Karagiannis, D.: Domain-specific diagrammatic modelling: a source of machine-readable semantics for the Internet of Things. Cluster Comput. 20(1), 895–908 (2017)CrossRefGoogle Scholar
  28. 28.
    Wu, X., Cao, C., Wang, Ya., Fu, J., Wang, S.: Extracting knowledge from web tables based on DOM tree similarity. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 302–313. Springer, Cham (2016). doi:10.1007/978-3-319-47650-6_24 CrossRefGoogle Scholar
  29. 29.
    Marumo, N., Beppu, T., Yamaguchi, T.: A knowledge-transfer system integrating workflow, a rule base, domain ontologies and a goal tree. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS, vol. 8793, pp. 357–367. Springer, Cham (2014). doi:10.1007/978-3-319-12096-6_32 Google Scholar
  30. 30.
    Laarman, A., Kurtev, I.: Ontological metamodeling with explicit instantiation. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 174–183. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12107-4_14 CrossRefGoogle Scholar
  31. 31.
    Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT, Centre for Telematics and Information Technology, Ph.D. thesis Series, No. 05-74 (2005)Google Scholar
  32. 32.
    Lantow, B., Sandkuhl, K., Fellmann, M.: Visual language and ontology based analysis: using OWL for relation discovery and query in 4EM. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 263, pp. 23–35. Springer, Cham (2017). doi:10.1007/978-3-319-52464-1_3 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Ana-Maria Ghiran
    • 1
  • Robert Andrei Buchmann
    • 1
  • Cristina-Claudia Osman
    • 1
  • Dimitris Karagiannis
    • 2
  1. 1.Business Informatics Research CenterBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Knowledge Engineering Research GroupUniversity of ViennaViennaAustria

Personalised recommendations