Skip to main content

Is Data Retrieval Different from Text Retrieval? An Exploratory Study

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10647)

Abstract

The fundamental characteristics of and form of user interaction with research datasets differ considerably from those of research publications. Notwithstanding these differences, however, the majority of currently available research data repositories use the same retrieval engines for research data (datasets) as for publications (text), which retrieval engines, inevitably, are ill-suited as long-term solutions for sustainable data retrieval and use. This paper, through a systematic experiment, demonstrates the fundamental and deep-rooted differences between retrieval of research publications (predominantly text) and research data (i.e. datasets), and justifies the need for more research to build more efficient and effective data retrieval systems.

Keywords

  • Data retrieval
  • Text retrieval
  • Research data management

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-70232-2_8
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-70232-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    https://www.wikipedia.org.

  2. 2.

    https://www.webofknowledge.com/.

  3. 3.

    https://www.ukdataservice.ac.uk/.

  4. 4.

    https://www.dataone.org/.

  5. 5.

    datadryad.org/.

  6. 6.

    https://www.nature.com/sdata/policies/repositories.

References

  1. The world’s most valuable resource. The Economist, p. 9, 6–12 May 2017

    Google Scholar 

  2. Borgman, C.L.: The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 63(6), 1059–1078 (2012)

    CrossRef  Google Scholar 

  3. Borgman, C.L.: Big Data, Little Data, No Data: Scholarship in the Networked World. The MIT Press, Cambridge (2015)

    Google Scholar 

  4. Borgman, C.L., Wallis, J.C., Mayernik, M.S.: Who’s got the data? Interdependencies in science and technology collaborations. Comput. Support. Coop. Work 21(6), 485–523 (2012)

    CrossRef  Google Scholar 

  5. The Data harvest: How sharing research data can yield knowledge, jobs and growth. An RDA Europe report, December 2014. https://rd-alliance.org/sites/default/files/attachment/The%20Data%20Harvest%20Final.pdf. Accessed 11 June 2017

  6. MacMillan, D.: Data sharing and discovery: what librarians need to know. J. Acad. Librarianship 40(5), 541–549 (2014)

    CrossRef  Google Scholar 

  7. Wallis, J.C., Rolando, E., Borgman, C.L.: If we share data, will anyone use them? Data sharing and reuse in the long tail of science and technology. PLoS ONE 8(7), e67332 (2013). doi:10.1371/journal.pone.0067332

    CrossRef  Google Scholar 

  8. Jansen, B.J., Spink, A.: How are we searching the world wide web? A comparison of nine search engine transaction logs. Inf. Process. Manag. 42(1), 248–263 (2006)

    CrossRef  Google Scholar 

  9. Spink, A., Wolfram, D., Jansen, B.J., Saracevik, T.: Searching the web: the public and their queries. J. Am. Soc. Inf. Sci. 53(2), 226–234 (2001)

    CrossRef  Google Scholar 

  10. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 521–530 (2007)

    Google Scholar 

  11. Maley, C., Baum, N.: Getting to the top of google: search engine optimization. J. Med. Pract. Manag. MPM 25(5), 301–303 (2010)

    Google Scholar 

  12. Wu, M., Marian, A.: A framework for corroborating answers from multiple web sources. Inf. Syst. 36(2), 431–449 (2011)

    CrossRef  Google Scholar 

  13. Chowdhury, G.G.: Sustainability of Scholarly Information. Facet Publishing, London (2014)

    Google Scholar 

  14. Chowdhury, G.G.: How to improve the sustainability of digital libraries and information services? J. Assoc. Inf. Sci. Technol. 67(10), 2379–2391 (2016)

    CrossRef  Google Scholar 

  15. Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y.: Energy-efficient data replication in cloud computing datacenters. Cluster Comput. 18(1), 385–402 (2015)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinda Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bugaje, M., Chowdhury, G. (2017). Is Data Retrieval Different from Text Retrieval? An Exploratory Study. In: Choemprayong, S., Crestani, F., Cunningham, S. (eds) Digital Libraries: Data, Information, and Knowledge for Digital Lives. ICADL 2017. Lecture Notes in Computer Science(), vol 10647. Springer, Cham. https://doi.org/10.1007/978-3-319-70232-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70232-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70231-5

  • Online ISBN: 978-3-319-70232-2

  • eBook Packages: Computer ScienceComputer Science (R0)